scispace - formally typeset
Search or ask a question
Author

Tamar Flash

Bio: Tamar Flash is an academic researcher from Weizmann Institute of Science. The author has contributed to research in topics: Kinematics & Motor control. The author has an hindex of 50, co-authored 152 publications receiving 13308 citations. Previous affiliations of Tamar Flash include Massachusetts Institute of Technology & Tel Aviv Sourasky Medical Center.


Papers
More filters
Journal ArticleDOI
TL;DR: A mathematical model is formulated which is shown to predict both the qualitative features and the quantitative details observed experimentally in planar, multijoint arm movements, and is successful only when formulated in terms of the motion of the hand in extracorporal space.
Abstract: This paper presents studies of the coordination of voluntary human arm movements. A mathematical model is formulated which is shown to predict both the qualitative features and the quantitative details observed experimentally in planar, multijoint arm movements. Coordination is modeled mathematically by defining an objective function, a measure of performance for any possible movement. The unique trajectory which yields the best performance is determined using dynamic optimization theory. In the work presented here, the objective function is the square of the magnitude of jerk (rate of change of acceleration) of the hand integrated over the entire movement. This is equivalent to assuming that a major goal of motor coordination is the production of the smoothest possible movement of the hand. Experimental observations of human subjects performing voluntary unconstrained movements in a horizontal plane are presented. They confirm the following predictions of the mathematical model: unconstrained point-to-point motions are approximately straight with bell-shaped tangential velocity profiles; curved motions (through an intermediate point or around an obstacle) have portions of low curvature joined by portions of high curvature; at points of high curvature, the tangential velocity is reduced; the durations of the low-curvature portions are approximately equal. The theoretical analysis is based solely on the kinematics of movement independent of the dynamics of the musculoskeletal system and is successful only when formulated in terms of the motion of the hand in extracorporal space. The implications with respect to movement organization are discussed.

4,226 citations

Journal ArticleDOI
TL;DR: The significance of the individual interaction forces during reaching movements in a horizontal plane involving only the shoulder and elbow joints has been assessed and trajectory formation strategies which simplify the dynamics computation are presented.
Abstract: Movement of multiple segment limbs requires generation of appropriate joint torques which include terms arising from dynamic interactions among the moving segments as well as from such external forces as gravity. The interaction torques, arising from inertial, centripetal, and Coriolis forces, are not present for single joint movements. The significance of the individual interaction forces during reaching movements in a horizontal plane involving only the shoulder and elbow joints has been assessed for different movement paths and movement speeds. Trajectory formation strategies which simplify the dynamics computation are presented.

808 citations

Journal ArticleDOI
TL;DR: The success of the predicted behavior in capturing both the qualitative features and the quantitative kinematic details of the measured movements supports the equilibrium trajectory hypothesis and the control strategy suggested here may allow the motor system to avoid some of the complicated computational problems associated with multi-joint arm movements.
Abstract: According to the equilibrium trajectory hypothesis, multi-joint arm movements are achieved by gradually shifting the hand equilibrium positions defined by the neuromuscular activity. The magnitude of the force exerted on the arm, at any time, depends on the difference between the actual and equilibrium hand positions and the stiffness and viscosity about the equilibrium position. The purpose of this paper is to test the validity and implications of this hypothesis in the context of reaching movements. A mathematical description of the behavior of an arm tracking the equilibrium trajectory was developed and implemented in computer simulations. The joint stiffness parameters used in these simulations were derived from experimentally measured static stiffness values. The kinematic features of hand equilibrium trajectories which were derived from measured planar horizontal movements gave rise to the suggestion that the generation of reaching movements involves explicit planning of spatially and temporally invariant hand equilibrium trajectories. This hypothesis was tested by simulating actual arm movements based on hypothetical equilibrium trajectories. The success of the predicted behavior in capturing both the qualitative features and the quantitative kinematic details of the measured movements supports the equilibrium trajectory hypothesis. The control strategy suggested here may allow the motor system to avoid some of the complicated computational problems associated with multi-joint arm movements.

631 citations

Journal ArticleDOI
TL;DR: This work has suggested that motor and movement primitives and modules might exist at the neural, dynamic and kinematic levels with complicated mapping among the elementary building blocks subserving these different levels of representation.

463 citations

Journal ArticleDOI
TL;DR: New concepts and computational models that integrate behavioral and neurophysiological observations have addressed several of the most fundamental long-standing problems in motor control.

379 citations


Cited by
More filters
01 Jan 1964
TL;DR: In this paper, the notion of a collective unconscious was introduced as a theory of remembering in social psychology, and a study of remembering as a study in Social Psychology was carried out.
Abstract: Part I. Experimental Studies: 2. Experiment in psychology 3. Experiments on perceiving III Experiments on imaging 4-8. Experiments on remembering: (a) The method of description (b) The method of repeated reproduction (c) The method of picture writing (d) The method of serial reproduction (e) The method of serial reproduction picture material 9. Perceiving, recognizing, remembering 10. A theory of remembering 11. Images and their functions 12. Meaning Part II. Remembering as a Study in Social Psychology: 13. Social psychology 14. Social psychology and the matter of recall 15. Social psychology and the manner of recall 16. Conventionalism 17. The notion of a collective unconscious 18. The basis of social recall 19. A summary and some conclusions.

5,690 citations

01 Aug 2000
TL;DR: Assessment of medical technology in the context of commercialization with Bioentrepreneur course, which addresses many issues unique to biomedical products.
Abstract: BIOE 402. Medical Technology Assessment. 2 or 3 hours. Bioentrepreneur course. Assessment of medical technology in the context of commercialization. Objectives, competition, market share, funding, pricing, manufacturing, growth, and intellectual property; many issues unique to biomedical products. Course Information: 2 undergraduate hours. 3 graduate hours. Prerequisite(s): Junior standing or above and consent of the instructor.

4,833 citations

Journal ArticleDOI
TL;DR: A mathematical model is formulated which is shown to predict both the qualitative features and the quantitative details observed experimentally in planar, multijoint arm movements, and is successful only when formulated in terms of the motion of the hand in extracorporal space.
Abstract: This paper presents studies of the coordination of voluntary human arm movements. A mathematical model is formulated which is shown to predict both the qualitative features and the quantitative details observed experimentally in planar, multijoint arm movements. Coordination is modeled mathematically by defining an objective function, a measure of performance for any possible movement. The unique trajectory which yields the best performance is determined using dynamic optimization theory. In the work presented here, the objective function is the square of the magnitude of jerk (rate of change of acceleration) of the hand integrated over the entire movement. This is equivalent to assuming that a major goal of motor coordination is the production of the smoothest possible movement of the hand. Experimental observations of human subjects performing voluntary unconstrained movements in a horizontal plane are presented. They confirm the following predictions of the mathematical model: unconstrained point-to-point motions are approximately straight with bell-shaped tangential velocity profiles; curved motions (through an intermediate point or around an obstacle) have portions of low curvature joined by portions of high curvature; at points of high curvature, the tangential velocity is reduced; the durations of the low-curvature portions are approximately equal. The theoretical analysis is based solely on the kinematics of movement independent of the dynamics of the musculoskeletal system and is successful only when formulated in terms of the motion of the hand in extracorporal space. The implications with respect to movement organization are discussed.

4,226 citations

Journal ArticleDOI
28 May 2015-Nature
TL;DR: This Review discusses recent developments in the emerging field of soft robotics, and explores the design and control of soft-bodied robots composed of compliant materials.
Abstract: Conventionally, engineers have employed rigid materials to fabricate precise, predictable robotic systems, which are easily modelled as rigid members connected at discrete joints. Natural systems, however, often match or exceed the performance of robotic systems with deformable bodies. Cephalopods, for example, achieve amazing feats of manipulation and locomotion without a skeleton; even vertebrates such as humans achieve dynamic gaits by storing elastic energy in their compliant bones and soft tissues. Inspired by nature, engineers have begun to explore the design and control of soft-bodied robots composed of compliant materials. This Review discusses recent developments in the emerging field of soft robotics.

3,824 citations