scispace - formally typeset
Search or ask a question
Author

Tamás F. Freund

Bio: Tamás F. Freund is an academic researcher from Hungarian Academy of Sciences. The author has contributed to research in topics: Hippocampal formation & Parvalbumin. The author has an hindex of 96, co-authored 235 publications receiving 31361 citations. Previous affiliations of Tamás F. Freund include Pázmány Péter Catholic University & University of Szeged.


Papers
More filters
Journal ArticleDOI
TL;DR: The synthetic pathways of endocannabinoids are discussed, along with the putative mechanisms of their release, uptake, and degradation, and the fine-grain anatomical distribution of the neuronal cannabinoid receptor CB1 is described in most brain areas, emphasizing its general presynaptic localization and role in controlling neurotransmitter release.
Abstract: Research of cannabinoid actions was boosted in the 1990s by remarkable discoveries including identification of endogenous compounds with cannabimimetic activity (endocannabinoids) and the cloning of their molecular targets, the CB1 and CB2 receptors. Although the existence of an endogenous cannabinoid signaling system has been established for a decade, its physiological roles have just begun to unfold. In addition, the behavioral effects of exogenous cannabinoids such as delta-9-tetrahydrocannabinol, the major active compound of hashish and marijuana, await explanation at the cellular and network levels. Recent physiological, pharmacological, and high-resolution anatomical studies provided evidence that the major physiological effect of cannabinoids is the regulation of neurotransmitter release via activation of presynaptic CB1 receptors located on distinct types of axon terminals throughout the brain. Subsequent discoveries shed light on the functional consequences of this localization by demonstrating the involvement of endocannabinoids in retrograde signaling at GABAergic and glutamatergic synapses. In this review, we aim to synthesize recent progress in our understanding of the physiological roles of endocannabinoids in the brain. First, the synthetic pathways of endocannabinoids are discussed, along with the putative mechanisms of their release, uptake, and degradation. The fine-grain anatomical distribution of the neuronal cannabinoid receptor CB1 is described in most brain areas, emphasizing its general presynaptic localization and role in controlling neurotransmitter release. Finally, the possible functions of endocannabinoids as retrograde synaptic signal molecules are discussed in relation to synaptic plasticity and network activity patterns.

1,511 citations

Journal ArticleDOI
TL;DR: A representative group of researchers are convened to agree on a set of terms to describe the anatomical, physiological and molecular features of GABAergic interneurons of the cerebral cortex, and the resulting terminology might provide a stepping stone towards a future classification of these complex and heterogeneous cells.
Abstract: Neuroscience produces a vast amount of data from an enormous diversity of neurons. A neuronal classification system is essential to organize such data and the knowledge that is derived from them. Classification depends on the unequivocal identification of the features that distinguish one type of neuron from another. The problems inherent in this are particularly acute when studying cortical interneurons. To tackle this, we convened a representative group of researchers to agree on a set of terms to describe the anatomical, physiological and molecular features of GABAergic interneurons of the cerebral cortex. The resulting terminology might provide a stepping stone towards a future classification of these complex and heterogeneous cells. Consistent adoption will be important for the success of such an initiative, and we also encourage the active involvement of the broader scientific community in the dynamic evolution of this project.

1,417 citations

Journal ArticleDOI
TL;DR: The results suggest that cannabinoid-mediated modulation of hippocampal interneuron networks operate largely via presynaptic receptors on CCK-immunoreactive basket cell terminals, the likely mechanism by which both endogenous and exogenous CB1 ligands interfere with hippocampal network oscillations and associated cognitive functions.
Abstract: To understand the functional significance and mechanisms of action in the CNS of endogenous and exogenous cannabinoids, it is crucial to identify the neural elements that serve as the structural substrate of these actions We used a recently developed antibody against the CB1 cannabinoid receptor to study this question in hippocampal networks Interneurons with features typical of basket cells showed a selective, intense staining for CB1 in all hippocampal subfields and layers Most of them (856%) contained cholecystokinin (CCK), which corresponded to 969% of all CCK-positive interneurons, whereas only 46% of the parvalbumin (PV)-containing basket cells expressed CB1 Accordingly, electron microscopy revealed that CB1-immunoreactive axon terminals of CCK-containing basket cells surrounded the somata and proximal dendrites of pyramidal neurons, whereas PV-positive basket cell terminals in similar locations were negative for CB1 The synthetic cannabinoid agonist WIN 55,212-2 (001–3 μm) reduced dose-dependently the electrical field stimulation-induced [ 3 H]GABA release from superfused hippocampal slices, with an EC 50 value of 0041 μm Inhibition of GABA release by WIN 55,212-2 was not mediated by inhibition of glutamatergic transmission because the WIN 55,212-2 effect was not reduced by the glutamate blockers AP5 and CNQX In contrast, the CB1 cannabinoid receptor antagonist SR 141716A (1 μm) prevented this effect, whereas by itself it did not change the outflow of [ 3 H]GABA These results suggest that cannabinoid-mediated modulation of hippocampal interneuron networks operate largely via presynaptic receptors on CCK-immunoreactive basket cell terminals Reduction of GABA release from these terminals is the likely mechanism by which both endogenous and exogenous CB1 ligands interfere with hippocampal network oscillations and associated cognitive functions

1,169 citations

Journal ArticleDOI
01 Apr 1996-Neuron
TL;DR: Hippocampal synaptic inhibition is mediated by distinct groups of inhibitory cells that may differentially control dendritic electrogenesis and axonal output of hippocampal pyramidal cells.

945 citations

Journal ArticleDOI
TL;DR: The results indicate that the highly convergent excitation arriving onto the distal dendrites of pyramidal cells is primarily controlled by proximally located inhibition and the organization of excitatory and inhibitory inputs in layers receiving Schaffer collateral input (radiatum/oriens) versus perforant path input (lacunosum-moleculare) is significantly different.

933 citations


Cited by
More filters
Journal ArticleDOI
14 Mar 1997-Science
TL;DR: Findings in this work indicate that dopaminergic neurons in the primate whose fluctuating output apparently signals changes or errors in the predictions of future salient and rewarding events can be understood through quantitative theories of adaptive optimizing control.
Abstract: The capacity to predict future events permits a creature to detect, model, and manipulate the causal structure of its interactions with its environment. Behavioral experiments suggest that learning is driven by changes in the expectations about future salient events such as rewards and punishments. Physiological work has recently complemented these studies by identifying dopaminergic neurons in the primate whose fluctuating output apparently signals changes or errors in the predictions of future salient and rewarding events. Taken together, these findings can be understood through quantitative theories of adaptive optimizing control.

8,163 citations

Journal ArticleDOI
21 May 2015-Cell
TL;DR: Drop-seq will accelerate biological discovery by enabling routine transcriptional profiling at single-cell resolution by separating them into nanoliter-sized aqueous droplets, associating a different barcode with each cell's RNAs, and sequencing them all together.

5,506 citations

Journal ArticleDOI
18 Jul 2013-Nature
TL;DR: A family of ultrasensitive protein calcium sensors (GCaMP6) that outperformed other sensors in cultured neurons and in zebrafish, flies and mice in vivo are developed and provide new windows into the organization and dynamics of neural circuits over multiple spatial and temporal scales.
Abstract: Fluorescent calcium sensors are widely used to image neural activity. Using structure-based mutagenesis and neuron-based screening, we developed a family of ultrasensitive protein calcium sensors (GCaMP6) that outperformed other sensors in cultured neurons and in zebrafish, flies and mice in vivo. In layer 2/3 pyramidal neurons of the mouse visual cortex, GCaMP6 reliably detected single action potentials in neuronal somata and orientation-tuned synaptic calcium transients in individual dendritic spines. The orientation tuning of structurally persistent spines was largely stable over timescales of weeks. Orientation tuning averaged across spine populations predicted the tuning of their parent cell. Although the somata of GABAergic neurons showed little orientation tuning, their dendrites included highly tuned dendritic segments (5-40-µm long). GCaMP6 sensors thus provide new windows into the organization and dynamics of neural circuits over multiple spatial and temporal scales.

5,365 citations

Journal ArticleDOI
TL;DR: The results underscore the importance of precise spike timing, synaptic strength, and postsynaptic cell type in the activity-induced modification of central synapses and suggest that Hebb’s rule may need to incorporate a quantitative consideration of spike timing that reflects the narrow and asymmetric window for the induction of synaptic modification.
Abstract: In cultures of dissociated rat hippocampal neurons, persistent potentiation and depression of glutamatergic synapses were induced by correlated spiking of presynaptic and postsynaptic neurons. The relative timing between the presynaptic and postsynaptic spiking determined the direction and the extent of synaptic changes. Repetitive postsynaptic spiking within a time window of 20 msec after presynaptic activation resulted in long-term potentiation (LTP), whereas postsynaptic spiking within a window of 20 msec before the repetitive presynaptic activation led to long-term depression (LTD). Significant LTP occurred only at synapses with relatively low initial strength, whereas the extent of LTD did not show obvious dependence on the initial synaptic strength. Both LTP and LTD depended on the activation of NMDA receptors and were absent in cases in which the postsynaptic neurons were GABAergic in nature. Blockade of L-type calcium channels with nimodipine abolished the induction of LTD and reduced the extent of LTP. These results underscore the importance of precise spike timing, synaptic strength, and postsynaptic cell type in the activity-induced modification of central synapses and suggest that Hebb’s rule may need to incorporate a quantitative consideration of spike timing that reflects the narrow and asymmetric window for the induction of synaptic modification.

4,382 citations

Journal ArticleDOI
TL;DR: Dopamine systems may have two functions, the phasic transmission of reward information and the tonic enabling of postsynaptic neurons.
Abstract: Schultz, Wolfram. Predictive reward signal of dopamine neurons. J. Neurophysiol. 80: 1–27, 1998. The effects of lesions, receptor blocking, electrical self-stimulation, and drugs of abuse suggest t...

3,962 citations