scispace - formally typeset
Search or ask a question
Author

Tania Gamberi

Bio: Tania Gamberi is an academic researcher from University of Florence. The author has contributed to research in topics: Auranofin & Oxidative stress. The author has an hindex of 20, co-authored 62 publications receiving 932 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: The present results indicate that the early beneficial effect of ET-1 antagonism on pulmonary blood pressure is followed by an impairment in volume adaptation, which must be considered for the prevention and treatment of acute mountain sickness.
Abstract: Background— The degree of pulmonary hypertension in healthy subjects exposed to acute hypobaric hypoxia at high altitude was found to be related to increased plasma endothelin (ET)-1. The aim of the present study was to investigate the effects of ET-1 antagonism on pulmonary hypertension, renal water, and sodium balance under acute and prolonged exposure to high-altitude–associated hypoxia. Methods and Results— In a double-blind fashion, healthy volunteers were randomly assigned to receive bosentan (62.5 mg for 1 day and 125 mg for the following 2 days; n=10) or placebo (n=10) at sea level and after rapid ascent to high altitude (4559 m). At sea level, bosentan did not induce any significant changes in hemodynamic or renal parameters. At altitude, bosentan induced a significant reduction of systolic pulmonary artery pressure (21±7 versus 31±7 mm Hg, P<0.03) and a mild increase in arterial oxygen saturation versus placebo after just 1 day of treatment. However, both urinary volume and free water clearance ...

111 citations

Journal ArticleDOI
TL;DR: Results demonstrate that the presence of the thiosugar moiety is not mandatory for the pharmacological action, suggesting that the tuning of some relevant chemical properties such as lipophilicity could be exploited to improve bioavailability, with no loss of the pharmacology effects.
Abstract: The solution behavior of auranofin, Et3PAuCl and Et3PAuI, as well as their interactions with hen egg white lysozyme, single strand oligonucleotide, and ds-DNA were comparatively analyzed through NMR spectroscopy, ESI-MS, ethidium bromide displacement, DNA melting and viscometric tests. The cytotoxic effects toward representative colorectal cancer cell lines were found to be strong and similar in the three cases and a good correlation could be established between the cytotoxicity and the ability to inhibit thioredoxin reductase; remarkably, in vivo acute toxicity experiments for Et3PAuI confirmed that, similarly to auranofin, this drug is well tolerated in a murine model. Overall, a very similar profile emerges for Et3PAuI and Et3PAuCl, which retain the potent cytotoxic effects of auranofin while showing some peculiar features. These results demonstrate that the presence of the thiosugar moiety is not mandatory for the pharmacological action, suggesting that the tuning of some relevant chemical properties...

73 citations

Journal ArticleDOI
01 Feb 2005-Diabetes
TL;DR: In human nonfailing myocytes, high glucose allows Ang II to activate JAK2 signaling, whereas in failing myocyte, hyperglycemia alone is able to induce Ang II generation, which in turn activates Jak2 via enhanced oxidative stress.
Abstract: Hyperglycemia was reported to enhance angiotensin (Ang) II generation in rat cardiomyocytes, and Ang II inhibition reduces cardiovascular morbidity and mortality in diabetic patients. In diabetic patients, the enhanced activation of intracellular pathways related with myocyte hypertrophy and gene expression might enhance the progression of cardiac damage. Therefore, we investigated the effects of glucose on Ang II–mediated activation of Janus-activated kinase (JAK)-2, a tyrosine kinase related with myocyte hypertrophy and cytokine and fibrogenetic growth factor overexpression, in ventricular myocytes isolated from nonfailing human hearts ( n = 5) and failing human hearts ( n = 8). In nonfailing myocytes, JAK2 phosphorylation was enhanced by Ang II only in the presence of high glucose (25 mmol/l) via Ang II type I (AT1) receptors (+79% vs. normal glucose, P P

59 citations

Journal ArticleDOI
TL;DR: The role of adiponectin in tissue regeneration, mainly referring to skeletal muscle regeneration, is dealt with, a process in which adip onectin is deeply involved and increases proliferation, migration and myogenic properties of both resident stem cells and non-resident muscle precursors.
Abstract: The great interest that scientists have for adiponectin is primarily due to its central metabolic role. Indeed, the major function of this adipokine is the control of glucose homeostasis that it exerts regulating liver and muscle metabolism. Adiponectin has insulin-sensitizing action and leads to down-regulation of hepatic gluconeogenesis and an increase of fatty acid oxidation. In addition, adiponectin is reported to play an important role in the inhibition of inflammation. The hormone is secreted in full-length form, which can either assemble into complexes or be converted into globular form by proteolytic cleavage. Over the past few years, emerging publications reveal a more varied and pleiotropic action of this hormone. Many studies emphasize a key role of adiponectin during tissue regeneration and show that adiponectin deficiency greatly inhibits the mechanisms underlying tissue renewal. This review deals with the role of adiponectin in tissue regeneration, mainly referring to skeletal muscle regeneration, a process in which adiponectin is deeply involved. In this tissue, globular adiponectin increases proliferation, migration and myogenic properties of both resident stem cells (namely satellite cells) and non-resident muscle precursors (namely mesoangioblasts). Furthermore, skeletal muscle could be a site for the local production of the globular form that occurs in an inflamed environment. Overall, these recent findings contribute to highlight an intriguing function of adiponectin in addition to its well-recognized metabolic action.

57 citations

Journal ArticleDOI
TL;DR: When evaluated in a preclinical orthotopic model of ovarian cancer, Et 3 PAuI produces a far superior anticancer action than AF inducing a nearly complete tumor remission.
Abstract: In recent years, a few successful attempts were made to repurpose the clinically approved antiarthritic gold drug, Auranofin (AF), as an anticancer agent. The present study shows that the iodido(triethylphosphine)gold(I) complex, (Et3PAuI hereafter)—an AF analogue where the thiosugar ligand is simply replaced by one iodide ligand—manifests a solution chemistry resembling that of AF and exerts similar cytotoxic and proapoptotic effects on A2780 human ovarian cancer cells in vitro. However, when evaluated in a preclinical orthotopic model of ovarian cancer, Et3PAuI produces a far superior anticancer action than AF inducing a nearly complete tumor remission. The highly promising in vivo performances here documented for Et3PAuI warrant its further evaluation as a drug candidate for ovarian cancer treatment.

56 citations


Cited by
More filters
Journal Article
TL;DR: Cardiac myocyte apoptosis is a critical point in the transition between compensatory cardiac hypertrophy and heart failure and gp130-dependent cytokines may represent a novel therapeutic strategy for preventing in vivo heart failure.
Abstract: Biomechanical stress is a major stimulus for cardiac hypertrophy and the transition to heart failure. By generating mice that harbor a ventricular restricted knockout of the gp130 cytokine receptor via Cre-IoxP-mediated recombination, we demonstrate a critical role for a gp130-dependent myocyte survival pathway in the transition to heart failure. Such conditional mutant mice have normal cardiac structure and function, but during aortic pressure overload, these mice display rapid onset of dilated cardiomyopathy and massive induction of myocyte apoptosis versus the control mice that exhibit compensatory hypertrophy. Thus, cardiac myocyte apoptosis is a critical point in the transition between compensatory cardiac hypertrophy and heart failure. gp130-dependent cytokines may represent a novel therapeutic strategy for preventing in vivo heart failure.

641 citations

Journal ArticleDOI
TL;DR: Evidence regarding the contribution of HPV to the physiological and pathophysiological processes involved in the transition from fetal to neonatal life, pulmonary gas exchange, high-altitude pulmonary edema, and pulmonary hypertension is evaluated.
Abstract: It has been known for more than 60 years, and suspected for over 100, that alveolar hypoxia causes pulmonary vasoconstriction by means of mechanisms local to the lung. For the last 20 years, it has been clear that the essential sensor, transduction, and effector mechanisms responsible for hypoxic pulmonary vasoconstriction (HPV) reside in the pulmonary arterial smooth muscle cell. The main focus of this review is the cellular and molecular work performed to clarify these intrinsic mechanisms and to determine how they are facilitated and inhibited by the extrinsic influences of other cells. Because the interaction of intrinsic and extrinsic mechanisms is likely to shape expression of HPV in vivo, we relate results obtained in cells to HPV in more intact preparations, such as intact and isolated lungs and isolated pulmonary vessels. Finally, we evaluate evidence regarding the contribution of HPV to the physiological and pathophysiological processes involved in the transition from fetal to neonatal life, pulmonary gas exchange, high-altitude pulmonary edema, and pulmonary hypertension. Although understanding of HPV has advanced significantly, major areas of ignorance and uncertainty await resolution.

576 citations

Journal ArticleDOI
TL;DR: The naturally occurring inactivation of GAPDH functions as a metabolic switch for rerouting the carbohydrate flux to counteract oxidative stress, and altering the homoeostasis of cytoplasmic metabolites is a fundamental mechanism for balancing the redox state of eukaryotic cells under stress conditions.
Abstract: Eukaryotic cells have evolved various response mechanisms to counteract the deleterious consequences of oxidative stress Among these processes, metabolic alterations seem to play an important role We recently discovered that yeast cells with reduced activity of the key glycolytic enzyme triosephosphate isomerase exhibit an increased resistance to the thiol-oxidizing reagent diamide Here we show that this phenotype is conserved in Caenorhabditis elegans and that the underlying mechanism is based on a redirection of the metabolic flux from glycolysis to the pentose phosphate pathway, altering the redox equilibrium of the cytoplasmic NADP(H) pool Remarkably, another key glycolytic enzyme, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), is known to be inactivated in response to various oxidant treatments, and we show that this provokes a similar redirection of the metabolic flux The naturally occurring inactivation of GAPDH functions as a metabolic switch for rerouting the carbohydrate flux to counteract oxidative stress As a consequence, altering the homoeostasis of cytoplasmic metabolites is a fundamental mechanism for balancing the redox state of eukaryotic cells under stress conditions

526 citations

Journal ArticleDOI
TL;DR: The current understanding of anticancer gold complexes is summarized, including their mechanisms of action and the approaches adopted to improve their anticancer efficiency.
Abstract: Gold complexes have recently gained increasing attention in the design of new metal-based anticancer therapeutics. Gold(III) complexes are generally reactive/unstable under physiological conditions via intracellular redox reactions, and the intracellular AuIII to AuI reduction reaction has recently been “traced” by the introduction of appropriate fluorescent ligands. Similar to most Au(I) complexes, Au(III) complexes can inhibit the activities of thiol-containing enzymes, including thioredoxin reductase, via ligand exchange reactions to form Au–S(Se) bonds. Nonetheless, there are examples of physiologically stable Au(III) and Au(I) complexes, such as [Au(TPP)]Cl (H2TPP = 5,10,15,20-tetraphenylporphyrin) and [Au(dppe)2]Cl (dppe = 1,2-bis(diphenylphosphanyl)ethane), which are known to display highly potent in vitro and in vivo anticancer activities. In this review, we summarize our current understanding of anticancer gold complexes, including their mechanisms of action and the approaches adopted to improve their anticancer efficiency. Some recent examples of gold anticancer chemotherapeutics are highlighted.

449 citations

Journal ArticleDOI
TL;DR: An overview of the current knowledge about the apoptotic subroutine of yeast PCD and its regulation is provided to provide a teleological interpretation of PCD affecting a unicellular organism.
Abstract: A cell's decision to die is controlled by a sophisticated network whose deregulation contributes to the pathogenesis of multiple diseases including neoplastic and neurodegenerative disorders. The finding, more than a decade ago, that baker's yeast (Saccharomyces cerevisiae) can undergo apoptosis uncovered the possibility to investigate this mode of programmed cell death (PCD) in a model organism that combines both technical advantages and a eukaryotic 'cell room.' Since then, numerous exogenous and endogenous triggers have been found to induce yeast apoptosis and multiple yeast orthologs of crucial metazoan apoptotic regulators have been identified and characterized at the molecular level. Such apoptosis-relevant orthologs include proteases such as the yeast caspase as well as several mitochondrial and nuclear proteins that contribute to the execution of apoptosis in a caspase-independent manner. Additionally, physiological scenarios such as aging and failed mating have been discovered to trigger apoptosis in yeast, providing a teleological interpretation of PCD affecting a unicellular organism. Due to its methodological and logistic simplicity, yeast constitutes an ideal model organism that is efficiently helping to decipher the cell death regulatory network of higher organisms, including the switches between apoptotic, autophagic, and necrotic pathways of cellular catabolism. Here, we provide an overview of the current knowledge about the apoptotic subroutine of yeast PCD and its regulation.

448 citations