scispace - formally typeset
Search or ask a question
Author

Tania Michelle Roberts

Bio: Tania Michelle Roberts is an academic researcher from ETH Zurich. The author has contributed to research in topics: Gene & DNA repair. The author has an hindex of 11, co-authored 18 publications receiving 2898 citations. Previous affiliations of Tania Michelle Roberts include University of Guelph & University of Toronto.

Papers
More filters
Journal ArticleDOI
06 Feb 2004-Science
TL;DR: Because digenic interactions are common in yeast, similar networks may underlie the complex genetics associated with inherited phenotypes in other organisms.
Abstract: A genetic interaction network containing approximately 1000 genes and approximately 4000 interactions was mapped by crossing mutations in 132 different query genes into a set of approximately 4700 viable gene yeast deletion mutants and scoring the double mutant progeny for fitness defects. Network connectivity was predictive of function because interactions often occurred among functionally related genes, and similar patterns of interactions tended to identify components of the same pathway. The genetic network exhibited dense local neighborhoods; therefore, the position of a gene on a partially mapped network is predictive of other genetic interactions. Because digenic interactions are common in yeast, similar networks may underlie the complex genetics associated with inherited phenotypes in other organisms.

2,037 citations

Journal ArticleDOI
24 Oct 2008-Science
TL;DR: Spontaneous gene conversion can be enhanced in a Slx8- and Nup84-dependent manner by tethering donor sites at the nuclear periphery, which suggests that strand breaks are shunted to nuclear pores for a repair pathway controlled by a conserved SUMO-dependent E3 ligase.
Abstract: Recent findings suggest important roles for nuclear organization in gene expression. In contrast, little is known about how nuclear organization contributes to genome stability. Epistasis analysis (E-MAP) using DNA repair factors in yeast indicated a functional relationship between a nuclear pore subcomplex and Slx5/Slx8, a small ubiquitin-like modifier (SUMO)–dependent ubiquitin ligase, which we show physically interact. Real-time imaging and chromatin immunoprecipitation confirmed stable recruitment of damaged DNA to nuclear pores. Relocation required the Nup84 complex and Mec1/Tel1 kinases. Spontaneous gene conversion can be enhanced in a Slx8- and Nup84-dependent manner by tethering donor sites at the nuclear periphery. This suggests that strand breaks are shunted to nuclear pores for a repair pathway controlled by a conserved SUMO-dependent E3 ligase.

404 citations

Journal ArticleDOI
20 Dec 1974-Science
TL;DR: It seemned that the ingestion of contaminated dirt and dusts rather than "paint pica" was the major route of lead intake and metabolic changes were found in most of 21 children selected from those with excessive lead absorption.
Abstract: A high rate of lead fallout around two secondary lead smelters originated mainly from episodal large-particulate emissions from low-level fugitive sources rather than from stack fumes. The lead content of dustfall, and consequently of soil, vegetation, and outdoor dust, decreased exponentially with distance from the two smelters. Between 13 and 30 percent of the children living in the contaminated areas had absorbed excessive amounts of lead (more than 40 micrograms per 100 milliliters of blood and more than 100 micrograms per gram of hair) as compared with less than 1 percent in a control group. A relationship between blood and hair was established which indicated that the absorption was fairly constant for most children examined. It seemned that the ingestion of contaminated dirt and dusts rather than "paint pica" was the major route of lead intake. Metabolic changes were found in most of 21 children selected from those with excessive lead absorption; 10 to 15 percent of this group showed subtle neurological dysfunctions and minor psychomotor abnormalities.

111 citations

Journal ArticleDOI
TL;DR: Surprisingly, mutants in slx5 or slx8 were not sensitive to transient replication fork stalling induced by hydroxyurea, nor were they sensitive to replication dependent double-strand breaks induced by camptothecin, which suggested that Slx8 and SlX8 played limited roles in stabilizing, restarting, or resolving transiently stalled replication forks, but were critical for preventing the accumulation of DNA damage during normal cell cycle progression.

91 citations

Journal ArticleDOI
TL;DR: It is proposed that Slx4 has roles in the DNA damage response that are distinct from the function of Slx1-Slx4 in maintaining rDNA structure and that Sl x4-dependent phosphorylation of Rtt107 by Mec1 is critical for replication restart after alkylation damage.
Abstract: RTT107 (ESC4, YHR154W) encodes a BRCA1 C-terminal-domain protein that is important for recovery from DNA damage during S phase. Rtt107 is a substrate of the checkpoint protein kinase Mec1, although...

86 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

01 Aug 2000
TL;DR: Assessment of medical technology in the context of commercialization with Bioentrepreneur course, which addresses many issues unique to biomedical products.
Abstract: BIOE 402. Medical Technology Assessment. 2 or 3 hours. Bioentrepreneur course. Assessment of medical technology in the context of commercialization. Objectives, competition, market share, funding, pricing, manufacturing, growth, and intellectual property; many issues unique to biomedical products. Course Information: 2 undergraduate hours. 3 graduate hours. Prerequisite(s): Junior standing or above and consent of the instructor.

4,833 citations

Journal ArticleDOI
TL;DR: BioGRID is a freely accessible database of physical and genetic interactions that includes >116 000 interactions from Saccharomyces cerevisiae, Caenorhabditis elegans, Drosophila melanogaster and Homo sapiens.
Abstract: Access to unified datasets of protein and genetic interactions is critical for interrogation of gene/protein function and analysis of global network properties. BioGRID is a freely accessible database of physical and genetic interactions available at http://www.thebiogrid.org. BioGRID release version 2.0 includes >116 000 interactions from Saccharomyces cerevisiae, Caenorhabditis elegans, Drosophila melanogaster and Homo sapiens. Over 30 000 interactions have recently been added from 5778 sources through exhaustive curation of the Saccharomyces cerevisiae primary literature. An internally hyper-linked web interface allows for rapid search and retrieval of interaction data. Full or user-defined datasets are freely downloadable as tab-delimited text files and PSI-MI XML. Pre-computed graphical layouts of interactions are available in a variety of file formats. User-customized graphs with embedded protein, gene and interaction attributes can be constructed with a visualization system called Osprey that is dynamically linked to the BioGRID.

3,794 citations

Journal ArticleDOI
TL;DR: This protocol explains how to use Cytoscape to analyze the results of mRNA expression profiling, and other functional genomics and proteomics experiments, in the context of an interaction network obtained for genes of interest.
Abstract: Cytoscape is a free software package for visualizing, modeling and analyzing molecular and genetic interaction networks. This protocol explains how to use Cytoscape to analyze the results of mRNA expression profiling, and other functional genomics and proteomics experiments, in the context of an interaction network obtained for genes of interest. Five major steps are described: (i) obtaining a gene or protein network, (ii) displaying the network using layout algorithms, (iii) integrating with gene expression and other functional attributes, (iv) identifying putative complexes and functional modules and (v) identifying enriched Gene Ontology annotations in the network. These steps provide a broad sample of the types of analyses performed by Cytoscape.

2,313 citations

Journal ArticleDOI
22 Jan 2010-Science
TL;DR: A network based on genetic interaction profiles reveals a functional map of the cell in which genes of similar biological processes cluster together in coherent subsets, and highly correlated profiles delineate specific pathways to define gene function.
Abstract: A genome-scale genetic interaction map was constructed by examining 5.4 million gene-gene pairs for synthetic genetic interactions, generating quantitative genetic interaction profiles for ~75% of all genes in the budding yeast, Saccharomyces cerevisiae. A network based on genetic interaction profiles reveals a functional map of the cell in which genes of similar biological processes cluster together in coherent subsets, and highly correlated profiles delineate specific pathways to define gene function. The global network identifies functional cross-connections between all bioprocesses, mapping a cellular wiring diagram of pleiotropy. Genetic interaction degree correlated with a number of different gene attributes, which may be informative about genetic network hubs in other organisms. We also demonstrate that extensive and unbiased mapping of the genetic landscape provides a key for interpretation of chemical-genetic interactions and drug target identification.

2,225 citations