scispace - formally typeset
Search or ask a question
Author

Tania Singer

Bio: Tania Singer is an academic researcher from Max Planck Society. The author has contributed to research in topics: Empathy & Social neuroscience. The author has an hindex of 65, co-authored 192 publications receiving 25250 citations. Previous affiliations of Tania Singer include Systems Research Institute & University of Vienna.


Papers
More filters
Journal ArticleDOI
20 Feb 2004-Science
TL;DR: Only that part of the pain network associated with its affective qualities, but not its sensory qualities, mediates empathy, suggesting that the neural substrate for empathic experience does not involve the entire "pain matrix".
Abstract: Our ability to have an experience of another's pain is characteristic of empathy. Using functional imaging, we assessed brain activity while volunteers experienced a painful stimulus and compared it to that elicited when they observed a signal indicating that their loved one--present in the same room--was receiving a similar pain stimulus. Bilateral anterior insula (AI), rostral anterior cingulate cortex (ACC), brainstem, and cerebellum were activated when subjects received pain and also by a signal that a loved one experienced pain. AI and ACC activation correlated with individual empathy scores. Activity in the posterior insula/secondary somatosensory cortex, the sensorimotor cortex (SI/MI), and the caudal ACC was specific to receiving pain. Thus, a neural response in AI and rostral ACC, activated in common for "self" and "other" conditions, suggests that the neural substrate for empathic experience does not involve the entire "pain matrix." We conclude that only that part of the pain network associated with its affective qualities, but not its sensory qualities, mediates empathy.

3,425 citations

Journal ArticleDOI
TL;DR: An in‐depth and critical discussion of the findings of recent studies showing that empathy is a highly flexible phenomenon, and that vicarious responses are malleable with respect to a number of factors.
Abstract: The phenomenon of empathy entails the ability to share the affective experiences of others. In recent years social neuroscience made considerable progress in revealing the mechanisms that enable a person to feel what another is feeling. The present review provides an in-depth and critical discussion of these findings. Consistent evidence shows that sharing the emotions of others is associated with activation in neural structures that are also active during the first-hand experience of that emotion. Part of the neural activation shared between self- and other-related experiences seems to be rather automatically activated. However, recent studies also show that empathy is a highly flexible phenomenon, and that vicarious responses are malleable with respect to a number of factors--such as contextual appraisal, the interpersonal relationship between empathizer and other, or the perspective adopted during observation of the other. Future investigations are needed to provide more detailed insights into these factors and their neural underpinnings. Questions such as whether individual differences in empathy can be explained by stable personality traits, whether we can train ourselves to be more empathic, and how empathy relates to prosocial behavior are of utmost relevance for both science and society.

1,636 citations

Journal ArticleDOI
TL;DR: It is concluded that social neuroscience paradigms provide reliable and accurate insights into complex social phenomena such as empathy and that meta-analyses of previous studies are a valuable tool in this endeavor.

1,604 citations

Journal ArticleDOI
26 Jan 2006-Nature
TL;DR: It is shown that in men (at least) empathic responses are shaped by valuation of other people's social behaviour, such that they empathize with fair opponents while favouring the physical punishment of unfair opponents, a finding that echoes recent evidence for altruistic punishment.
Abstract: The neural processes underlying empathy are a subject of intense interest within the social neurosciences. However, very little is known about how brain empathic responses are modulated by the affective link between individuals. We show here that empathic responses are modulated by learned preferences, a result consistent with economic models of social preferences. We engaged male and female volunteers in an economic game, in which two confederates played fairly or unfairly, and then measured brain activity with functional magnetic resonance imaging while these same volunteers observed the confederates receiving pain. Both sexes exhibited empathy-related activation in pain-related brain areas (fronto-insular and anterior cingulate cortices) towards fair players. However, these empathy-related responses were significantly reduced in males when observing an unfair person receiving pain. This effect was accompanied by increased activation in reward-related areas, correlated with an expressed desire for revenge. We conclude that in men (at least) empathic responses are shaped by valuation of other people's social behaviour, such that they empathize with fair opponents while favouring the physical punishment of unfair opponents, a finding that echoes recent evidence for altruistic punishment.

1,521 citations

Journal ArticleDOI
TL;DR: This work proposes two major roles for empathy; its epistemological role is to provide information about the future actions of other people, and important environmental properties, and proposes a contextual approach, suggesting several modulatory factors that might influence empathic brain responses.

1,404 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: Two distinct networks typically coactivated during functional MRI tasks are identified, anchored by dorsal anterior cingulate and orbital frontoinsular cortices with robust connectivity to subcortical and limbic structures, and an “executive-control network” that links dorsolateral frontal and parietal neocortices.
Abstract: Variations in neural circuitry, inherited or acquired, may underlie important individual differences in thought, feeling, and action patterns. Here, we used task-free connectivity analyses to isolate and characterize two distinct networks typically coactivated during functional MRI tasks. We identified a "salience network," anchored by dorsal anterior cingulate (dACC) and orbital frontoinsular cortices with robust connectivity to subcortical and limbic structures, and an "executive-control network" that links dorsolateral frontal and parietal neocortices. These intrinsic connectivity networks showed dissociable correlations with functions measured outside the scanner. Prescan anxiety ratings correlated with intrinsic functional connectivity of the dACC node of the salience network, but with no region in the executive-control network, whereas executive task performance correlated with lateral parietal nodes of the executive-control network, but with no region in the salience network. Our findings suggest that task-free analysis of intrinsic connectivity networks may help elucidate the neural architectures that support fundamental aspects of human behavior.

6,049 citations

Journal ArticleDOI
TL;DR: New findings suggest a fundamental role for the AIC (and the von Economo neurons it contains) in awareness, and thus it needs to be considered as a potential neural correlate of consciousness.
Abstract: The anterior insular cortex (AIC) is implicated in a wide range of conditions and behaviours, from bowel distension and orgasm, to cigarette craving and maternal love, to decision making and sudden insight. Its function in the re-representation of interoception offers one possible basis for its involvement in all subjective feelings. New findings suggest a fundamental role for the AIC (and the von Economo neurons it contains) in awareness, and thus it needs to be considered as a potential neural correlate of consciousness.

5,279 citations

Journal ArticleDOI
TL;DR: It is suggested that this framework provides a parsimonious account of insula function in neurotypical adults, and may provide novel insights into the neural basis of disorders of affective and social cognition.
Abstract: The insula is a brain structure implicated in disparate cognitive, affective, and regulatory functions, including interoceptive awareness, emotional responses, and empathic processes. While classically considered a limbic region, recent evidence from network analysis suggests a critical role for the insula, particularly the anterior division, in high-level cognitive control and attentional processes. The crucial insight and view we present here is of the anterior insula as an integral hub in mediating dynamic interactions between other large-scale brain networks involved in externally oriented attention and internally oriented or self-related cognition. The model we present postulates that the insula is sensitive to salient events, and that its core function is to mark such events for additional processing and initiate appropriate control signals. The anterior insula and the anterior cingulate cortex form a “salience network” that functions to segregate the most relevant among internal and extrapersonal stimuli in order to guide behavior. Within the framework of our network model, the disparate functions ascribed to the insula can be conceptualized by a few basic mechanisms: (1) bottom–up detection of salient events, (2) switching between other large-scale networks to facilitate access to attention and working memory resources when a salient event is detected, (3) interaction of the anterior and posterior insula to modulate autonomic reactivity to salient stimuli, and (4) strong functional coupling with the anterior cingulate cortex that facilitates rapid access to the motor system. In this manner, with the insula as its integral hub, the salience network assists target brain regions in the generation of appropriate behavioral responses to salient stimuli. We suggest that this framework provides a parsimonious account of insula function in neurotypical adults, and may provide novel insights into the neural basis of disorders of affective and social cognition.

4,322 citations

Journal ArticleDOI
TL;DR: This target article critically examines this "hierarchical prediction machine" approach, concluding that it offers the best clue yet to the shape of a unified science of mind and action.
Abstract: Brains, it has recently been argued, are essentially prediction machines. They are bundles of cells that support perception and action by constantly attempting to match incoming sensory inputs with top-down expectations or predictions. This is achieved using a hierarchical generative model that aims to minimize prediction error within a bidirectional cascade of cortical processing. Such accounts offer a unifying model of perception and action, illuminate the functional role of attention, and may neatly capture the special contribution of cortical processing to adaptive success. This target article critically examines this "hierarchical prediction machine" approach, concluding that it offers the best clue yet to the shape of a unified science of mind and action. Sections 1 and 2 lay out the key elements and implications of the approach. Section 3 explores a variety of pitfalls and challenges, spanning the evidential, the methodological, and the more properly conceptual. The paper ends (sections 4 and 5) by asking how such approaches might impact our more general vision of mind, experience, and agency.

3,640 citations