scispace - formally typeset
Search or ask a question
Author

Tanja Poulain

Bio: Tanja Poulain is an academic researcher from Leipzig University. The author has contributed to research in topics: Medicine & Socioeconomic status. The author has an hindex of 13, co-authored 53 publications receiving 730 citations.

Papers published on a yearly basis

Papers
More filters
01 Jan 2019
TL;DR: Trans-ancestry meta-analysis of estimated glomerular filtration rate (eGFR) from 1,046,070 individuals identifies 264 associated loci, providing a resource of molecular targets for translational research of chronic kidney disease.
Abstract: Chronic kidney disease (CKD) is responsible for a public health burden with multi-systemic complications. Through trans-ancestry meta-analysis of genome-wide association studies of estimated glomerular filtration rate (eGFR) and independent replication (n = 1,046,070), we identified 264 associated loci (166 new). Of these, 147 were likely to be relevant for kidney function on the basis of associations with the alternative kidney function marker blood urea nitrogen (n = 416,178). Pathway and enrichment analyses, including mouse models with renal phenotypes, support the kidney as the main target organ. A genetic risk score for lower eGFR was associated with clinically diagnosed CKD in 452,264 independent individuals. Colocalization analyses of associations with eGFR among 783,978 European-ancestry individuals and gene expression across 46 human tissues, including tubulo-interstitial and glomerular kidney compartments, identified 17 genes differentially expressed in kidney. Fine-mapping highlighted missense driver variants in 11 genes and kidney-specific regulatory variants. These results provide a comprehensive priority list of molecular targets for translational research.Trans-ancestry meta-analysis of estimated glomerular filtration rate (eGFR) from 1,046,070 individuals identifies 264 associated loci, providing a resource of molecular targets for translational research of chronic kidney disease.

243 citations

Journal ArticleDOI
Adrienne Tin1, Jonathan Marten2, Victoria L. Halperin Kuhns3, Yong Li4  +248 moreInstitutions (77)
TL;DR: A trans-ancestry genome-wide association study of serum urate levels identifies 183 loci that improve the prediction of gout in an independent cohort of 334,880 individuals, and implicates the kidney and liver as key target organs and prioritize potential causal genes.
Abstract: Elevated serum urate levels cause gout and correlate with cardiometabolic diseases via poorly understood mechanisms. We performed a trans-ancestry genome-wide association study of serum urate in 457,690 individuals, identifying 183 loci (147 previously unknown) that improve the prediction of gout in an independent cohort of 334,880 individuals. Serum urate showed significant genetic correlations with many cardiometabolic traits, with genetic causality analyses supporting a substantial role for pleiotropy. Enrichment analysis, fine-mapping of urate-associated loci and colocalization with gene expression in 47 tissues implicated the kidney and liver as the main target organs and prioritized potentially causal genes and variants, including the transcriptional master regulators in the liver and kidney, HNF1A and HNF4A. Experimental validation showed that HNF4A transactivated the promoter of ABCG2, encoding a major urate transporter, in kidney cells, and that HNF4A p.Thr139Ile is a functional variant. Transcriptional coregulation within and across organs may be a general mechanism underlying the observed pleiotropy between urate and cardiometabolic traits.

214 citations

Journal ArticleDOI
TL;DR: The number of available and analyzable data is reported and demonstrates the high relevance and potential of the LIFE Child study.
Abstract: The LIFE Child study is a large population-based longitudinal childhood cohort study conducted in the city of Leipzig, Germany. As a part of LIFE, a research project conducted at the Leipzig Research Center for Civilization Diseases, it aims to monitor healthy child development from birth to adulthood and to understand the development of lifestyle diseases such as obesity. The study consists of three interrelated cohorts; the birth cohort, the health cohort, and the obesity cohort. Depending on age and cohort, the comprehensive study program comprises different medical, psychological, and sociodemographic assessments as well as the collection of biological samples. Optimal data acquisition, process management, and data analysis are guaranteed by a professional team of physicians, certified study assistants, quality managers, scientists and statisticians. Due to the high popularity of the study, more than 3000 children have already participated until the end of 2015, and two-thirds of them participate continuously. The large quantity of acquired data allows LIFE Child to gain profound knowledge on the development of children growing up in the twenty-first century. This article reports the number of available and analyzable data and demonstrates the high relevance and potential of the study.

139 citations

Journal ArticleDOI
Alexander Teumer1, Yong Li2, Sahar Ghasemi1, Bram P. Prins3  +206 moreInstitutions (69)
TL;DR: The authors report genome-wide meta-analysis in over 500,000 individuals and find 68 UACR loci, followed by statistical fine-mapping, gene prioritization and experimental validation in flies, which generate a priority list of genes and pathways for translational research to reduce albuminuria.
Abstract: Increased levels of the urinary albumin-to-creatinine ratio (UACR) are associated with higher risk of kidney disease progression and cardiovascular events, but underlying mechanisms are incompletely understood. Here, we conduct trans-ethnic (n = 564,257) and European-ancestry specific meta-analyses of genome-wide association studies of UACR, including ancestry- and diabetes-specific analyses, and identify 68 UACR-associated loci. Genetic correlation analyses and risk score associations in an independent electronic medical records database (n = 192,868) reveal connections with proteinuria, hyperlipidemia, gout, and hypertension. Fine-mapping and trans-Omics analyses with gene expression in 47 tissues and plasma protein levels implicate genes potentially operating through differential expression in kidney (including TGFB1, MUC1, PRKCI, and OAF), and allow coupling of UACR associations to altered plasma OAF concentrations. Knockdown of OAF and PRKCI orthologs in Drosophila nephrocytes reduces albumin endocytosis. Silencing fly PRKCI further impairs slit diaphragm formation. These results generate a priority list of genes and pathways for translational research to reduce albuminuria.

119 citations

Journal ArticleDOI
TL;DR: The notion that childhood tactile experiences shape the developing “social brain” with a particular emphasis on a network involved in mentalizing is supported.
Abstract: Previous behavioral research points to a positive relationship between maternal touch and early social development. Here, we explored the brain correlates of this relationship. The frequency of maternal touch was recorded for 43 five-year-old children during a 10 min standardized play session. Additionally, all children completed a resting-state functional magnetic resonance imaging session. Investigating the default mode network revealed a positive relation between the frequency of maternal touch and activity in the right posterior superior temporal sulcus (pSTS) extending into the temporo-parietal junction. Using this effect as a seed in a functional connectivity analysis identified a network including extended bilateral regions along the temporal lobe, bilateral frontal cortex, and left insula. Compared with children with low maternal touch, children with high maternal touch showed additional connectivity with the right dorso-medial prefrontal cortex. Together these results support the notion that childhood tactile experiences shape the developing "social brain" with a particular emphasis on a network involved in mentalizing.

100 citations


Cited by
More filters
01 Feb 2015
TL;DR: In this article, the authors describe the integrative analysis of 111 reference human epigenomes generated as part of the NIH Roadmap Epigenomics Consortium, profiled for histone modification patterns, DNA accessibility, DNA methylation and RNA expression.
Abstract: The reference human genome sequence set the stage for studies of genetic variation and its association with human disease, but epigenomic studies lack a similar reference. To address this need, the NIH Roadmap Epigenomics Consortium generated the largest collection so far of human epigenomes for primary cells and tissues. Here we describe the integrative analysis of 111 reference human epigenomes generated as part of the programme, profiled for histone modification patterns, DNA accessibility, DNA methylation and RNA expression. We establish global maps of regulatory elements, define regulatory modules of coordinated activity, and their likely activators and repressors. We show that disease- and trait-associated genetic variants are enriched in tissue-specific epigenomic marks, revealing biologically relevant cell types for diverse human traits, and providing a resource for interpreting the molecular basis of human disease. Our results demonstrate the central role of epigenomic information for understanding gene regulation, cellular differentiation and human disease.

4,409 citations

Journal ArticleDOI
TL;DR: The American Heart Association, in conjunction with the National Institutes of Health, annually reports the most up-to-date statistics related to heart disease, stroke, and cardiovascul...
Abstract: Background: The American Heart Association, in conjunction with the National Institutes of Health, annually reports the most up-to-date statistics related to heart disease, stroke, and cardiovascul...

3,034 citations

Journal ArticleDOI
TL;DR: The American Heart Association, through its Statistics Committee, continuously monitors and evaluates sources of data on heart disease and stroke in the United States to provide the most current information available in the annual Statistical Update as discussed by the authors .
Abstract: The American Heart Association, in conjunction with the National Institutes of Health, annually reports the most up-to-date statistics related to heart disease, stroke, and cardiovascular risk factors, including core health behaviors (smoking, physical activity, diet, and weight) and health factors (cholesterol, blood pressure, and glucose control) that contribute to cardiovascular health. The Statistical Update presents the latest data on a range of major clinical heart and circulatory disease conditions (including stroke, congenital heart disease, rhythm disorders, subclinical atherosclerosis, coronary heart disease, heart failure, valvular disease, venous disease, and peripheral artery disease) and the associated outcomes (including quality of care, procedures, and economic costs).The American Heart Association, through its Statistics Committee, continuously monitors and evaluates sources of data on heart disease and stroke in the United States to provide the most current information available in the annual Statistical Update. The 2022 Statistical Update is the product of a full year's worth of effort by dedicated volunteer clinicians and scientists, committed government professionals, and American Heart Association staff members. This year's edition includes data on the monitoring and benefits of cardiovascular health in the population and an enhanced focus on social determinants of health, adverse pregnancy outcomes, vascular contributions to brain health, and the global burden of cardiovascular disease and healthy life expectancy.Each of the chapters in the Statistical Update focuses on a different topic related to heart disease and stroke statistics.The Statistical Update represents a critical resource for the lay public, policymakers, media professionals, clinicians, health care administrators, researchers, health advocates, and others seeking the best available data on these factors and conditions.

1,483 citations

Journal ArticleDOI
TL;DR: Advances in genomic analysis are described that have enabled novel genetic discoveries, more than doubled the number of genetic loci associated with type 2 diabetes mellitus and uncovered several novel candidate genes for diabetes complications.
Abstract: Diabetes is one of the fastest growing diseases worldwide, projected to affect 693 million adults by 2045. Devastating macrovascular complications (cardiovascular disease) and microvascular complications (such as diabetic kidney disease, diabetic retinopathy and neuropathy) lead to increased mortality, blindness, kidney failure and an overall decreased quality of life in individuals with diabetes. Clinical risk factors and glycaemic control alone cannot predict the development of vascular complications; numerous genetic studies have demonstrated a clear genetic component to both diabetes and its complications. Early research aimed at identifying genetic determinants of diabetes complications relied on familial linkage analysis suited to strong-effect loci, candidate gene studies prone to false positives, and underpowered genome-wide association studies limited by sample size. The explosion of new genomic datasets, both in terms of biobanks and aggregation of worldwide cohorts, has more than doubled the number of genetic discoveries for both diabetes and diabetes complications. We focus herein on genetic discoveries for diabetes and diabetes complications, empowered primarily through genome-wide association studies, and emphasize the gaps in research for taking genomic discovery to the next level.

466 citations

Journal ArticleDOI
TL;DR: Among obese adolescents, the most rapid weight gain had occurred between 2 and 6 years of age; most children who were obese at that age were obese in adolescence.
Abstract: Background The dynamics of body-mass index (BMI) in children from birth to adolescence are unclear, and whether susceptibility for the development of sustained obesity occurs at a specific...

445 citations