scispace - formally typeset
Search or ask a question
Author

Tao Chen

Bio: Tao Chen is an academic researcher from Fourth Military Medical University. The author has contributed to research in topics: Long-term potentiation & Anterior cingulate cortex. The author has an hindex of 36, co-authored 111 publications receiving 8564 citations. Previous affiliations of Tao Chen include Xi'an Jiaotong University & UPRRP College of Natural Sciences.


Papers
More filters
Journal ArticleDOI
TL;DR: The SARS-CoV-2 infection may affect primarily T lymphocytes particularly CD4+T and CD8+ T cells, resulting in decrease in numbers as well as IFN-γ production, which may be of importance due to their correlation with disease severity in COVID-19.
Abstract: BACKGROUNDSince December 2019, an outbreak of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged in Wuhan, and is now becoming a global threat. We aimed to delineate and compare the immunological features of severe and moderate COVID-19.METHODSIn this retrospective study, the clinical and immunological characteristics of 21 patients (17 male and 4 female) with COVID-19 were analyzed. These patients were classified as severe (11 cases) and moderate (10 cases) according to the guidelines released by the National Health Commission of China.RESULTSThe median age of severe and moderate cases was 61.0 and 52.0 years, respectively. Common clinical manifestations included fever, cough, and fatigue. Compared with moderate cases, severe cases more frequently had dyspnea, lymphopenia, and hypoalbuminemia, with higher levels of alanine aminotransferase, lactate dehydrogenase, C-reactive protein, ferritin, and D-dimer as well as markedly higher levels of IL-2R, IL-6, IL-10, and TNF-α. Absolute numbers of T lymphocytes, CD4+ T cells, and CD8+ T cells decreased in nearly all the patients, and were markedly lower in severe cases (294.0, 177.5, and 89.0 × 106/L, respectively) than moderate cases (640.5, 381.5, and 254.0 × 106/L, respectively). The expression of IFN-γ by CD4+ T cells tended to be lower in severe cases (14.1%) than in moderate cases (22.8%).CONCLUSIONThe SARS-CoV-2 infection may affect primarily T lymphocytes, particularly CD4+ and CD8+ T cells, resulting in a decrease in numbers as well as IFN-γ production by CD4+ T cells. These potential immunological markers may be of importance because of their correlation with disease severity in COVID-19.TRIAL REGISTRATIONThis is a retrospective observational study without a trial registration number.FUNDINGThis work is funded by grants from Tongji Hospital for the Pilot Scheme Project, and partly supported by the Chinese National Thirteenth Five Years Project in Science and Technology for Infectious Disease (2017ZX10202201).

3,488 citations

Journal ArticleDOI
26 Mar 2020-BMJ
TL;DR: Severe acute respiratory syndrome coronavirus 2 infection can cause both pulmonary and systemic inflammation, leading to multi-organ dysfunction in patients at high risk, including patients with cardiovascular comorbidity.
Abstract: Objective To delineate the clinical characteristics of patients with coronavirus disease 2019 (covid-19) who died. Design Retrospective case series. Setting Tongji Hospital in Wuhan, China. Participants Among a cohort of 799 patients, 113 who died and 161 who recovered with a diagnosis of covid-19 were analysed. Data were collected until 28 February 2020. Main outcome measures Clinical characteristics and laboratory findings were obtained from electronic medical records with data collection forms. Results The median age of deceased patients (68 years) was significantly older than recovered patients (51 years). Male sex was more predominant in deceased patients (83; 73%) than in recovered patients (88; 55%). Chronic hypertension and other cardiovascular comorbidities were more frequent among deceased patients (54 (48%) and 16 (14%)) than recovered patients (39 (24%) and 7 (4%)). Dyspnoea, chest tightness, and disorder of consciousness were more common in deceased patients (70 (62%), 55 (49%), and 25 (22%)) than in recovered patients (50 (31%), 48 (30%), and 1 (1%)). The median time from disease onset to death in deceased patients was 16 (interquartile range 12.0-20.0) days. Leukocytosis was present in 56 (50%) patients who died and 6 (4%) who recovered, and lymphopenia was present in 103 (91%) and 76 (47%) respectively. Concentrations of alanine aminotransferase, aspartate aminotransferase, creatinine, creatine kinase, lactate dehydrogenase, cardiac troponin I, N-terminal pro-brain natriuretic peptide, and D-dimer were markedly higher in deceased patients than in recovered patients. Common complications observed more frequently in deceased patients included acute respiratory distress syndrome (113; 100%), type I respiratory failure (18/35; 51%), sepsis (113; 100%), acute cardiac injury (72/94; 77%), heart failure (41/83; 49%), alkalosis (14/35; 40%), hyperkalaemia (42; 37%), acute kidney injury (28; 25%), and hypoxic encephalopathy (23; 20%). Patients with cardiovascular comorbidity were more likely to develop cardiac complications. Regardless of history of cardiovascular disease, acute cardiac injury and heart failure were more common in deceased patients. Conclusion Severe acute respiratory syndrome coronavirus 2 infection can cause both pulmonary and systemic inflammation, leading to multi-organ dysfunction in patients at high risk. Acute respiratory distress syndrome and respiratory failure, sepsis, acute cardiac injury, and heart failure were the most common critical complications during exacerbation of covid-19.

3,231 citations

Journal ArticleDOI
22 Oct 2009-Nature
TL;DR: It is demonstrated that brief sleep deprivation disrupts hippocampal function by interfering with cAMP signalling through increased PDE4 activity, and drugs that enhance camp signalling may provide a new therapeutic approach to counteract the cognitive effects of sleep deprivation.
Abstract: Millions of people regularly obtain insufficient sleep. Given the effect of sleep deprivation on our lives, understanding the cellular and molecular pathways affected by sleep deprivation is clearly of social and clinical importance. One of the major effects of sleep deprivation on the brain is to produce memory deficits in learning models that are dependent on the hippocampus. Here we have identified a molecular mechanism by which brief sleep deprivation alters hippocampal function. Sleep deprivation selectively impaired 3', 5'-cyclic AMP (cAMP)- and protein kinase A (PKA)-dependent forms of synaptic plasticity in the mouse hippocampus, reduced cAMP signalling, and increased activity and protein levels of phosphodiesterase 4 (PDE4), an enzyme that degrades cAMP. Treatment of mice with phosphodiesterase inhibitors rescued the sleep-deprivation-induced deficits in cAMP signalling, synaptic plasticity and hippocampus-dependent memory. These findings demonstrate that brief sleep deprivation disrupts hippocampal function by interfering with cAMP signalling through increased PDE4 activity. Thus, drugs that enhance cAMP signalling may provide a new therapeutic approach to counteract the cognitive effects of sleep deprivation.

362 citations

Journal ArticleDOI
03 Dec 2010-Science
TL;DR: It is found that protein kinase M zeta (PKMζ) maintains pain-induced persistent changes in the mouse anterior cingulate cortex (ACC) and could be a new therapeutic target for treating chronic pain.
Abstract: Synaptic plasticity is a key mechanism for chronic pain It occurs at different levels of the central nervous system, including spinal cord and cortex Studies have mainly focused on signaling proteins that trigger these plastic changes, whereas few have addressed the maintenance of plastic changes related to chronic pain We found that protein kinase M zeta (PKMζ) maintains pain-induced persistent changes in the mouse anterior cingulate cortex (ACC) Peripheral nerve injury caused activation of PKMζ in the ACC, and inhibiting PKMζ by a selective inhibitor, ζ-pseudosubstrate inhibitory peptide (ZIP), erased synaptic potentiation Microinjection of ZIP into the ACC blocked behavioral sensitization These results suggest that PKMζ in the ACC acts to maintain neuropathic pain PKMζ could thus be a new therapeutic target for treating chronic pain

352 citations

Journal ArticleDOI
21 Jan 2015-Neuron
TL;DR: This work characterized two forms of long-term potentiation in the anterior cingulate cortex (ACC) that require kainate receptors and a postsynaptic form (post-LTP) that requires N-methyl-D-aspartate receptors, providing a mechanism by which two form of LTP in the ACC may converge to mediate the interaction between anxiety and chronic pain.

257 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: The findings reinforce the recommendation to strictly apply pharmacological thrombosis prophylaxis in all COVID-19 patients admitted to the ICU, and are strongly suggestive of increasing the prophYLaxis towards high-prophylactic doses, even in the absence of randomized evidence.

3,886 citations

Journal ArticleDOI
TL;DR: Author(s): Livingston, Gill; Huntley, Jonathan; Sommerlad, Andrew ; Sommer Glad, Andrew; Ames, David; Ballard, Clive; Banerjee, Sube; Brayne, Carol; Burns, Alistair; Cohen-Mansfield, Jiska; Cooper, Claudia; Costafreda, Sergi G; Dias, Amit; Fox, Nick; Gitlin, Laura N; Howard, Robert; Kales, Helen C;

3,559 citations

Journal ArticleDOI
TL;DR: The interaction of SARS-CoV-2 with the immune system and the subsequent contribution of dysfunctional immune responses to disease progression is described and the implications of these approaches for potential therapeutic interventions that target viral infection and/or immunoregulation are highlighted.
Abstract: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of the ongoing coronavirus disease 2019 (COVID-19) pandemic. Alongside investigations into the virology of SARS-CoV-2, understanding the fundamental physiological and immunological processes underlying the clinical manifestations of COVID-19 is vital for the identification and rational design of effective therapies. Here, we provide an overview of the pathophysiology of SARS-CoV-2 infection. We describe the interaction of SARS-CoV-2 with the immune system and the subsequent contribution of dysfunctional immune responses to disease progression. From nascent reports describing SARS-CoV-2, we make inferences on the basis of the parallel pathophysiological and immunological features of the other human coronaviruses targeting the lower respiratory tract - severe acute respiratory syndrome coronavirus (SARS-CoV) and Middle East respiratory syndrome coronavirus (MERS-CoV). Finally, we highlight the implications of these approaches for potential therapeutic interventions that target viral infection and/or immunoregulation.

3,236 citations