scispace - formally typeset
Search or ask a question
Author

Tao Han

Bio: Tao Han is an academic researcher from Huazhong University of Science and Technology. The author has contributed to research in topics: Cellular network & Heterogeneous network. The author has an hindex of 19, co-authored 85 publications receiving 2609 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the backhaul network capacity and energy efficiency of ultra-dense cellular networks are investigated to answer how much densification can be deployed for 5G ultra-density cellular networks.
Abstract: Traditional ultra-dense wireless networks are recommended as a complement for cellular networks and are deployed in partial areas, such as hotspot and indoor scenarios. Based on the massive multiple-input multi-output antennas and the millimeter wave communication technologies, the 5G ultra-dense cellular network is proposed to deploy in overall cellular scenarios. Moreover, a distribution network architecture is presented for 5G ultra-dense cellular networks. Furthermore, the backhaul network capacity and the backhaul energy efficiency of ultra-dense cellular networks are investigated to answer an important question, that is, how much densification can be deployed for 5G ultra-dense cellular networks. Simulation results reveal that there exist densification limits for 5G ultra-dense cellular networks with backhaul network capacity and backhaul energy efficiency constraints.

845 citations

Journal ArticleDOI
TL;DR: The wireless backhaul traffic in two typical network architectures adopting small cell and millimeter wave communication technologies is analyzed and the energy efficiency of wirelessBackhaul networks is compared for different network architectures and frequency bands.
Abstract: 5G networks are expected to achieve gigabit-level throughput in future cellular networks. However, it is a great challenge to treat 5G wireless backhaul traffic in an effective way. In this article, we analyze the wireless backhaul traffic in two typical network architectures adopting small cell and millimeter wave communication technologies. Furthermore, the energy efficiency of wireless backhaul networks is compared for different network architectures and frequency bands. Numerical comparison results provide some guidelines for deploying future 5G wireless backhaul networks in economical and highly energy-efficient ways.

597 citations

Journal ArticleDOI
TL;DR: New spatial spectrum and energy efficiency models for Poisson-Voronoi tessellation (PVT) random cellular networks and a Markov chain based wireless channel access model are proposed and analyzed.
Abstract: It is a great challenge to evaluate the network performance of cellular mobile communication systems. In this paper, we propose new spatial spectrum and energy efficiency models for Poisson-Voronoi tessellation (PVT) random cellular networks. To evaluate the user access to the network, a Markov chain based wireless channel access model is first proposed for PVT random cellular networks. On that basis, the outage probability and blocking probability of PVT random cellular networks are derived, which can be computed numerically. Furthermore, taking into account the call arrival rate, the path loss exponent and the base station (BS) density in random cellular networks, spatial spectrum and energy efficiency models are proposed and analyzed for PVT random cellular networks. Numerical simulations are conducted to evaluate the network spectrum and energy efficiency in PVT random cellular networks.

234 citations

Journal ArticleDOI
TL;DR: Numerical results indicate that the maximum energy efficiency of the proposed EEHP and EEHP-MRFC algorithms are improved by 220% and 171%, respectively.
Abstract: With the massive multi-input multi-output (MIMO) antennas technology adopted for the fifth generation (5G) wireless communication systems, a large number of radio frequency (RF) chains have to be employed for RF circuits. However, a large number of RF chains not only increase the cost of RF circuits but also consume additional energy in 5G wireless communication systems. In this paper, we investigate energy and cost efficiency optimization solutions for 5G wireless communication systems with a large number of antennas and RF chains. An energy efficiency optimization problem is formulated for 5G wireless communication systems using massive MIMO antennas and millimeter wave technology. Considering the nonconcave feature of the objective function, a suboptimal iterative algorithm, i.e., the energy efficient hybrid precoding (EEHP) algorithm is developed for maximizing the energy efficiency of 5G wireless communication systems. To reduce the cost of RF circuits, the energy efficient hybrid precoding with the minimum number of RF chains (EEHP-MRFC) algorithm is also proposed. Moreover, the critical number of antennas searching (CNAS) and user equipment number optimization (UENO) algorithms are further developed to optimize the energy efficiency of 5G wireless communication systems by the number of transmit antennas and UEs. Compared with the maximum energy efficiency of conventional zero-forcing (ZF) precoding algorithm, numerical results indicate that the maximum energy efficiency of the proposed EEHP and EEHP-MRFC algorithms are improved by 220% and 171%, respectively.

142 citations

Posted Content
TL;DR: Simulation results reveal that there exist densification limits for 5G ultra-dense cellular networks with backhaul network capacity and backhaul energy efficiency constraints.
Abstract: Traditional ultra-dense wireless networks are recommended as a complement for cellular networks and are deployed in partial areas, such as hotspot and indoor scenarios. Based on the massive multiple-input multi-output (MIMO) antennas and the millimeter wavecommunication technologies, the 5G ultra-dense cellular network is proposed to deploy in overall cellular scenarios. Moreover, a distribution network architecture is presented for 5G ultra-dense cellular networks. Furthermore, the backhaul network capacity and the backhaul energy efficiency of ultra-dense cellular networks are investigated to answer an important question, i.e., how much densification can be deployed for 5G ultra-dense cellular networks. Simulation results reveal that there exist densification limits for 5G ultra-dense cellualr networks with backhaul network capacity and backhaul energy efficiency constraints.

116 citations


Cited by
More filters
01 Jan 2016
TL;DR: The table of integrals series and products is universally compatible with any devices to read and is available in the book collection an online access to it is set as public so you can get it instantly.
Abstract: Thank you very much for downloading table of integrals series and products. Maybe you have knowledge that, people have look hundreds times for their chosen books like this table of integrals series and products, but end up in harmful downloads. Rather than reading a good book with a cup of coffee in the afternoon, instead they cope with some harmful virus inside their laptop. table of integrals series and products is available in our book collection an online access to it is set as public so you can get it instantly. Our book servers saves in multiple locations, allowing you to get the most less latency time to download any of our books like this one. Merely said, the table of integrals series and products is universally compatible with any devices to read.

4,085 citations

Journal ArticleDOI
TL;DR: In this article, a comprehensive tutorial on the potential benefits and applications of UAVs in wireless communications is presented, and the important challenges and the fundamental tradeoffs in UAV-enabled wireless networks are thoroughly investigated.
Abstract: The use of flying platforms such as unmanned aerial vehicles (UAVs), popularly known as drones, is rapidly growing. In particular, with their inherent attributes such as mobility, flexibility, and adaptive altitude, UAVs admit several key potential applications in wireless systems. On the one hand, UAVs can be used as aerial base stations to enhance coverage, capacity, reliability, and energy efficiency of wireless networks. On the other hand, UAVs can operate as flying mobile terminals within a cellular network. Such cellular-connected UAVs can enable several applications ranging from real-time video streaming to item delivery. In this paper, a comprehensive tutorial on the potential benefits and applications of UAVs in wireless communications is presented. Moreover, the important challenges and the fundamental tradeoffs in UAV-enabled wireless networks are thoroughly investigated. In particular, the key UAV challenges such as 3D deployment, performance analysis, channel modeling, and energy efficiency are explored along with representative results. Then, open problems and potential research directions pertaining to UAV communications are introduced. Finally, various analytical frameworks and mathematical tools, such as optimization theory, machine learning, stochastic geometry, transport theory, and game theory are described. The use of such tools for addressing unique UAV problems is also presented. In a nutshell, this tutorial provides key guidelines on how to analyze, optimize, and design UAV-based wireless communication systems.

1,395 citations

Posted Content
TL;DR: This tutorial provides key guidelines on how to analyze, optimize, and design UAV-based wireless communication systems on the basis of 3D deployment, performance analysis, channel modeling, and energy efficiency.
Abstract: The use of flying platforms such as unmanned aerial vehicles (UAVs), popularly known as drones, is rapidly growing. In particular, with their inherent attributes such as mobility, flexibility, and adaptive altitude, UAVs admit several key potential applications in wireless systems. On the one hand, UAVs can be used as aerial base stations to enhance coverage, capacity, reliability, and energy efficiency of wireless networks. On the other hand, UAVs can operate as flying mobile terminals within a cellular network. Such cellular-connected UAVs can enable several applications ranging from real-time video streaming to item delivery. In this paper, a comprehensive tutorial on the potential benefits and applications of UAVs in wireless communications is presented. Moreover, the important challenges and the fundamental tradeoffs in UAV-enabled wireless networks are thoroughly investigated. In particular, the key UAV challenges such as three-dimensional deployment, performance analysis, channel modeling, and energy efficiency are explored along with representative results. Then, open problems and potential research directions pertaining to UAV communications are introduced. Finally, various analytical frameworks and mathematical tools such as optimization theory, machine learning, stochastic geometry, transport theory, and game theory are described. The use of such tools for addressing unique UAV problems is also presented. In a nutshell, this tutorial provides key guidelines on how to analyze, optimize, and design UAV-based wireless communication systems.

1,071 citations

Journal ArticleDOI
TL;DR: The current research state-of-the-art of 5G IoT, key enabling technologies, and main research trends and challenges in5G IoT are reviewed.

992 citations