scispace - formally typeset
Search or ask a question
Author

Tao Wu

Bio: Tao Wu is an academic researcher from University of Science and Technology of China. The author has contributed to research in topics: Superconductivity & Physics. The author has an hindex of 67, co-authored 208 publications receiving 16850 citations. Previous affiliations of Tao Wu include North Carolina State University & Kansas State University.


Papers
More filters
Journal ArticleDOI
25 May 2008-Nature
TL;DR: Chen et al. as discussed by the authors reported the discovery of bulk superconductivity in the related compound SmFeAsO1-xF x, which has a ZrCuSiAs-type structure.
Abstract: The recently discovered layered rare-earth metal oxypnictides have reinvigorated research into high-temperature superconductivity. The first of these, found only a few months ago, had a transition temperature of 26 K. A recent paper in Nature reported an iron–arsenic-based material superconducting at 43 K with the application of pressure. Previously only copper oxides superconductors had beaten the 40 K barrier. Now Chen et al. report bulk superconductivity in the samarium–arsenide oxide SmFeAsO1−xFx with a transition temperature of 43 K without this pressure. A report on the discovery of bulk superconductivity in samarium-arsenide oxides SmFeAsO1−xFx with a transition temperature as high as 43 K. Since the discovery of high-transition-temperature (high-Tc) superconductivity in layered copper oxides, extensive effort has been devoted to exploring the origins of this phenomenon. A Tc higher than 40 K (about the theoretical maximum predicted from Bardeen–Cooper–Schrieffer theory1), however, has been obtained only in the copper oxide superconductors. The highest reported value for non-copper-oxide bulk superconductivity is Tc = 39 K in MgB2 (ref. 2). The layered rare-earth metal oxypnictides LnOFeAs (where Ln is La–Nd, Sm and Gd) are now attracting attention following the discovery of superconductivity at 26 K in the iron-based LaO1-xF x FeAs (ref. 3). Here we report the discovery of bulk superconductivity in the related compound SmFeAsO1-xF x , which has a ZrCuSiAs-type structure. Resistivity and magnetization measurements reveal a transition temperature as high as 43 K. This provides a new material base for studying the origin of high-temperature superconductivity.

1,325 citations

Journal ArticleDOI
22 Apr 2005-Cell
TL;DR: Genetic interactions suggest a role for YfgL, one of the lipoprotein components of the protein assembly complex, in a homeostatic control mechanism that coordinates the overall OM assembly process.

704 citations

Journal ArticleDOI
TL;DR: In this paper, a tetragonal-to-orthorhombic distortion associated with the onset of the antiferromagnetic order in the FeAs-based materials was found.
Abstract: The recent discovery of superconductivity in $(\mathrm{Ba},\mathrm{K}){\mathrm{Fe}}_{2}{\mathrm{As}}_{2}$, which crystallizes in the ${\mathrm{ThCr}}_{2}{\mathrm{Si}}_{2}$ (122) structure as compared with the LnFeAsO (Ln is lanthanide) systems that possess the ZrCuSiAs (1111) structure, demonstrates the exciting potential of the FeAs-based materials for high-${T}_{C}$ superconductivity. Here we report neutron diffraction studies that show a tetragonal-to-orthorhombic distortion associated with the onset of $\mathbf{q}=(101)$ antiferromagnetic order in ${\mathrm{BaFe}}_{2}{\mathrm{As}}_{2}$, with a saturation moment $0.87(3){\ensuremath{\mu}}_{B}$ per Fe that is orientated along the longer $a$ axis of the $ab$ planes. The simultaneous first-order structural and magnetic transition is in contrast with the separated transitions previously reported in the 1111-type materials. The orientational relation between magnetic alignment and lattice distortion supports a multiorbital nature for the magnetic order.

612 citations

Journal ArticleDOI
TL;DR: It is suggested that SurA is the primary chaperone responsible for the periplasmic transit of the bulk mass of OMPs to the YaeT complex and evidence presented suggests that DegP/Skp function to rescue O MPs that fall off the SurA pathway.
Abstract: Integral beta-barrel proteins (OMPs) are a major class of outer membrane proteins in Gram-negative bacteria. In Escherichia coli, these proteins are synthesized in the cytoplasm, translocated across the inner membrane via the Sec machinery, and assembled in the outer membrane through an unknown mechanism that requires the outer membrane YaeT complex and the periplasmic chaperones SurA, DegP, and Skp. Here, we have established the relationship between these three chaperones providing insight into the mechanism of OMP biogenesis using depletion analysis. Depletion of SurA alone results in a marked decrease in outer membrane density, while the loss of DegP and Skp has no effect on outer membrane composition. Furthermore, we demonstrate that SurA and YaeT interact directly in vivo. Based on these results, we suggest that SurA is the primary chaperone responsible for the periplasmic transit of the bulk mass of OMPs to the YaeT complex. The role of Skp and DegP is amplified in the absence of SurA. Evidence presented suggests that DegP/Skp function to rescue OMPs that fall off the SurA pathway. The seemingly redundant periplasmic chaperones do function in parallel, but the relative importance of the primary function of each pathway depends on whether or not cells are under stress.

458 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This paper presents a meta-analysis of the chiral stationary phase transition of Na6(CO3)(SO4)2, a major component of the response of the immune system to Na2CO3.
Abstract: Ju Mei,†,‡,∥ Nelson L. C. Leung,†,‡,∥ Ryan T. K. Kwok,†,‡ Jacky W. Y. Lam,†,‡ and Ben Zhong Tang*,†,‡,§ †HKUST-Shenzhen Research Institute, Hi-Tech Park, Nanshan, Shenzhen 518057, China ‡Department of Chemistry, HKUST Jockey Club Institute for Advanced Study, Institute of Molecular Functional Materials, Division of Biomedical Engineering, State Key Laboratory of Molecular Neuroscience, Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China Guangdong Innovative Research Team, SCUT-HKUST Joint Research Laboratory, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China

5,658 citations

Journal ArticleDOI
TL;DR: This work reviews recent advances and challenges in the developments towards applications of stimuli-responsive polymeric materials that are self-assembled from nanostructured building blocks and provides a critical outline of emerging developments.
Abstract: Responsive polymer materials can adapt to surrounding environments, regulate transport of ions and molecules, change wettability and adhesion of different species on external stimuli, or convert chemical and biochemical signals into optical, electrical, thermal and mechanical signals, and vice versa. These materials are playing an increasingly important part in a diverse range of applications, such as drug delivery, diagnostics, tissue engineering and 'smart' optical systems, as well as biosensors, microelectromechanical systems, coatings and textiles. We review recent advances and challenges in the developments towards applications of stimuli-responsive polymeric materials that are self-assembled from nanostructured building blocks. We also provide a critical outline of emerging developments.

4,908 citations

Journal ArticleDOI
TL;DR: A number of substructural features which can help to identify compounds that appear as frequent hitters (promiscuous compounds) in many biochemical high throughput screens are described.
Abstract: This report describes a number of substructural features which can help to identify compounds that appear as frequent hitters (promiscuous compounds) in many biochemical high throughput screens. The compounds identified by such substructural features are not recognized by filters commonly used to identify reactive compounds. Even though these substructural features were identified using only one assay detection technology, such compounds have been reported to be active from many different assays. In fact, these compounds are increasingly prevalent in the literature as potential starting points for further exploration, whereas they may not be.

2,791 citations

Journal ArticleDOI
TL;DR: The structure, assembly, and function of the posttranslational modification with ubiquitin, a process referred to as ubiquitylation, controls almost every process in cells.
Abstract: The posttranslational modification with ubiquitin, a process referred to as ubiquitylation, controls almost every process in cells. Ubiquitin can be attached to substrate proteins as a single moiety or in the form of polymeric chains in which successive ubiquitin molecules are connected through specific isopeptide bonds. Reminiscent of a code, the various ubiquitin modifications adopt distinct conformations and lead to different outcomes in cells. Here, we discuss the structure, assembly, and function of this ubiquitin code.

2,762 citations