scispace - formally typeset
Search or ask a question
Author

Tapan K. Dutta

Bio: Tapan K. Dutta is an academic researcher from Bose Institute. The author has contributed to research in topics: Phthalate & Medicine. The author has an hindex of 20, co-authored 46 publications receiving 1772 citations. Previous affiliations of Tapan K. Dutta include United States Environmental Protection Agency.


Papers
More filters
Journal ArticleDOI
TL;DR: A review of current knowledge of bacteria, halophilic archaea, fungi and algae mediated degradation/transformation of polycyclic aromatic hydrocarbons can be found in this article.
Abstract: Polycyclic aromatic hydrocarbons (PAHs) include a group of organic priority pollutants of critical environmental and public health concern due to their toxic, genotoxic, mutagenic and/or carcinogenic properties and their ubiquitous occurrence as well as recalcitrance. The increased awareness of their various adverse effects on ecosystem and human health has led to a dramatic increase in research aimed towards removing PAHs from the environment. PAHs may undergo adsorption, volatilization, photolysis, and chemical oxidation, although transformation by microorganisms is the major neutralization process of PAH-contaminated sites in an ecologically accepted manner. Microbial degradation of PAHs depends on various environmental conditions, such as nutrients, number and kind of the microorganisms, nature as well as chemical property of the PAH being degraded. A wide variety of bacterial, fungal and algal species have the potential to degrade/transform PAHs, among which bacteria and fungi mediated degradation has been studied most extensively. In last few decades microbial community analysis, biochemical pathway for PAHs degradation, gene organization, enzyme system, genetic regulation for PAH degradation have been explored in great detail. Although, xenobiotic-degrading microorganisms have incredible potential to restore contaminated environments inexpensively yet effectively, but new advancements are required to make such microbes effective and more powerful in removing those compounds, which were once thought to be recalcitrant. Recent analytical chemistry and genetic engineering tools might help to improve the efficiency of degradation of PAHs by microorganisms, and minimize uncertainties of successful bioremediation. However, appropriate implementation of the potential of naturally occurring microorganisms for field bioremediation could be considerably enhanced by optimizing certain factors such as bioavailability, adsorption and mass transfer of PAHs. The main purpose of this review is to provide an overview of current knowledge of bacteria, halophilic archaea, fungi and algae mediated degradation/transformation of PAHs. In addition, factors affecting PAHs degradation in the environment, recent advancement in genetic, genomic, proteomic and metabolomic techniques are also highlighted with an aim to facilitate the development of a new insight into the bioremediation of PAH in the environment.

752 citations

Journal ArticleDOI
TL;DR: It is concluded that the susceptibility of crude oil to biodegradation is increased by its photooxidation, which mainly affected the aromatic compounds in crude oil and converted them to polar species.
Abstract: Photooxidation and biodegradation are the two most important factors involved in the transformation of crude oil or its products that are released into a marine environment. Natural microbial populations in seawater biodegraded 28% of crude oil within 8 weeks at 20 °C when sufficient nutrients were supplied to the seawater. Photooxidation mainly affected the aromatic compounds in crude oil and converted them to polar species. This treatment increased the amount of crude-oil components susceptible to biodegradation, and 36% of photooxidized crude oil could be degraded in 8 weeks at 20 °C. It is concluded that the susceptibility of crude oil to biodegradation is increased by its photooxidation.

171 citations

Journal ArticleDOI
TL;DR: The present review of bacterial degradation of low-molecular-weight (LMW) PAHs describes the current knowledge about the diverse metabolic pathways depicting novel metabolites, enzyme-substrate/metabolite relationships, the role of oxygenases and their distribution in phylogenetically diverse bacterial species.
Abstract: Widespread environmental pollution by polycyclic aromatic hydrocarbons (PAHs) poses an immense risk to the environment. Bacteria-mediated attenuation has a great potential for the restoration of PAH-contaminated environment in an ecologically accepted manner. Bacterial degradation of PAHs has been extensively studied and mining of biodiversity is ever expanding the biodegradative potentials with intelligent manipulation of catabolic genes and adaptive evolution to generate multiple catabolic pathways. The present review of bacterial degradation of low-molecular-weight (LMW) PAHs describes the current knowledge about the diverse metabolic pathways depicting novel metabolites, enzyme-substrate/metabolite relationships, the role of oxygenases and their distribution in phylogenetically diverse bacterial species.

129 citations

Journal ArticleDOI
TL;DR: This detailed study of polycyclic aromatic hydrocarbon metabolism by a Gram-positive species involving a unique ring-cleavage dioxygenase in a novel phenanthrene degradation pathway provides a new insight into the microbial degradation of PAHs.
Abstract: Staphylococcus sp strain PN/Y, capable of utilizing phenanthrene as a sole source of carbon and energy, was isolated from petroleum-contaminated soil In the degradation of phenanthrene by strain PN/Y, various metabolites, isolated and identified by a combination of chromatographic and spectrometric analyses, revealed a novel phenanthrene assimilation pathway involving 2-hydroxy-1-naphthoic acid Metabolism of phenanthrene was initiated by the dioxygenation on the 1,2-position of phenanthrene followed by meta-cleavage of phenanthrene-1,2-diol, leading to 2-hydroxy-1-naphthoic acid, which was then processed via a novel meta-cleavage pathway, leading to the formation of trans-2,3-dioxo-5-(2'-hydroxyphenyl)-pent-4-enoic acid and subsequently to salicylic acid In the lower pathway, salicylic acid was transformed to catechol, which was then metabolized by catechol-2,3-dioxygenase to 2-hydroxymuconaldehyde acid, ultimately forming TCA cycle intermediates The catabolic genes involved in phenanthrene degradation were found to be plasmid-encoded This detailed study of polycyclic aromatic hydrocarbon (PAH) metabolism by a Gram-positive species involving a unique ring-cleavage dioxygenase in a novel phenanthrene degradation pathway provides a new insight into the microbial degradation of PAHs

124 citations

Journal ArticleDOI
TL;DR: The microbial degradative characteristics of butyl benzyl phthalate (BBP) were investigated by the Gordonia sp.

100 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The physiological responses of microorganisms to the presence of hydrocarbons, including cell surface alterations and adaptive mechanisms for uptake and efflux of these substrates, have been characterized and used to investigate the dynamics of microbial communities in petroleum-impacted ecosystems.
Abstract: Recent advances in molecular biology have extended our understanding of the metabolic processes related to microbial transformation of petroleum hydrocarbons. The physiological responses of microorganisms to the presence of hydrocarbons, including cell surface alterations and adaptive mechanisms for uptake and efflux of these substrates, have been characterized. New molecular techniques have enhanced our ability to investigate the dynamics of microbial communities in petroleum-impacted ecosystems. By establishing conditions which maximize rates and extents of microbial growth, hydrocarbon access, and transformation, highly accelerated and bioreactor-based petroleum waste degradation processes have been implemented. Biofilters capable of removing and biodegrading volatile petroleum contaminants in air streams with short substrate-microbe contact times ( 2 S and sulfoxides from petrochemical waste streams. Microbes also have potential for use in removal of nitrogen from crude oil leading to reduced nitric oxide emissions provided that technical problems similar to those experienced in biodesulfurization can be solved. Enzymes are being exploited to produce added-value products from petroleum substrates, and bacterial biosensors are being used to analyze petroleum-contaminated environments.

1,346 citations

Journal ArticleDOI
01 Jun 1965-Nature
TL;DR: Polycyclic Hydrocarbons Vol. 1, No. 2 as mentioned in this paper, with a chapter on carcinogenesis by Regina Schoental. Pp. lvii + 487.
Abstract: Polycyclic Hydrocarbons Vol. 1. Pp. xxvi + 487. 126S. (With a chapter on carcinogenesis by Regina Schoental.) Vol. 2. Pp. lvii + 487. 140s. By E. Clar. (London and New York: Academic Press; Berlin: Springer-Verlag, 1964.)

1,175 citations

Journal ArticleDOI
TL;DR: That the globe is not swamped with oil is testament to the efficiency and versatility of the networks of microorganisms that degrade hydrocarbons, some of which have recently begun to reveal the secrets of when and how they exploit Hydrocarbons as a source of carbon and energy.
Abstract: Hundreds of millions of litres of petroleum enter the environment from both natural and anthropogenic sources every year. The input from natural marine oil seeps alone would be enough to cover all of the world's oceans in a layer of oil 20 molecules thick. That the globe is not swamped with oil is testament to the efficiency and versatility of the networks of microorganisms that degrade hydrocarbons, some of which have recently begun to reveal the secrets of when and how they exploit hydrocarbons as a source of carbon and energy.

993 citations

Journal ArticleDOI
TL;DR: The three peroxisome proliferator-activated receptors (PPARs) are ligand-activated transcription factors of the nuclear hormone receptor superfamily as discussed by the authors, which share a high degree of structural homology with all members of the superfamily, particularly in the DNA-binding domain and ligand and cofactor binding domain.
Abstract: The three peroxisome proliferator-activated receptors (PPARs) are ligand-activated transcription factors of the nuclear hormone receptor superfamily. They share a high degree of structural homology with all members of the superfamily, particularly in the DNA-binding domain and ligand- and cofactor-binding domain. Many cellular and systemic roles have been attributed to these receptors, reaching far beyond the stimulation of peroxisome proliferation in rodents after which they were initially named. PPARs exhibit broad, isotype-specific tissue expression patterns. PPARalpha is expressed at high levels in organs with significant catabolism of fatty acids. PPARbeta/delta has the broadest expression pattern, and the levels of expression in certain tissues depend on the extent of cell proliferation and differentiation. PPARgamma is expressed as two isoforms, of which PPARgamma2 is found at high levels in the adipose tissues, whereas PPARgamma1 has a broader expression pattern. Transcriptional regulation by PPARs requires heterodimerization with the retinoid X receptor (RXR). When activated by a ligand, the dimer modulates transcription via binding to a specific DNA sequence element called a peroxisome proliferator response element (PPRE) in the promoter region of target genes. A wide variety of natural or synthetic compounds was identified as PPAR ligands. Among the synthetic ligands, the lipid-lowering drugs, fibrates, and the insulin sensitizers, thiazolidinediones, are PPARalpha and PPARgamma agonists, respectively, which underscores the important role of PPARs as therapeutic targets. Transcriptional control by PPAR/RXR heterodimers also requires interaction with coregulator complexes. Thus, selective action of PPARs in vivo results from the interplay at a given time point between expression levels of each of the three PPAR and RXR isotypes, affinity for a specific promoter PPRE, and ligand and cofactor availabilities.

932 citations

Journal ArticleDOI
TL;DR: This review focuses on bacterial degradation pathways of selected aromatic compounds and describes proteomics and metabolomics as powerful tools for elucidation of biodegradation mechanisms.
Abstract: Aromatic compounds are among the most prevalent and persistent pollutants in the environment. Petroleum-contaminated soil and sediment commonly contain a mixture of polycyclic aromatic hydrocarbons (PAHs) and heterocyclic aromatics. Aromatics derived from industrial activities often have functional groups such as alkyls, halogens and nitro groups. Biodegradation is a major mechanism of removal of organic pollutants from a contaminated site. This review focuses on bacterial degradation pathways of selected aromatic compounds. Catabolic pathways of naphthalene, fluorene, phenanthrene, fluoranthene, pyrene, and benzo[a]pyrene are described in detail. Bacterial catabolism of the heterocycles dibenzofuran, carbazole, dibenzothiophene, and dibenzodioxin is discussed. Bacterial catabolism of alkylated PAHs is summarized, followed by a brief discussion of proteomics and metabolomics as powerful tools for elucidation of biodegradation mechanisms.

791 citations