scispace - formally typeset
Search or ask a question
Author

Tapas K. Maiti

Bio: Tapas K. Maiti is an academic researcher from Indian Institute of Technology Kharagpur. The author has contributed to research in topics: Glucan & Autophagy. The author has an hindex of 45, co-authored 308 publications receiving 13560 citations. Previous affiliations of Tapas K. Maiti include Department of Biotechnology & Indian Institutes of Technology.
Topics: Glucan, Autophagy, Apoptosis, Abrus, Fibroin


Papers
More filters
Journal ArticleDOI
Daniel J. Klionsky1, Kotb Abdelmohsen2, Akihisa Abe3, Joynal Abedin4  +2519 moreInstitutions (695)
TL;DR: In this paper, the authors present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macro-autophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes.
Abstract: In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. For example, a key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process versus those that measure flux through the autophagy pathway (i.e., the complete process including the amount and rate of cargo sequestered and degraded). In particular, a block in macroautophagy that results in autophagosome accumulation must be differentiated from stimuli that increase autophagic activity, defined as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (in most higher eukaryotes and some protists such as Dictyostelium) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the field understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. It is worth emphasizing here that lysosomal digestion is a stage of autophagy and evaluating its competence is a crucial part of the evaluation of autophagic flux, or complete autophagy. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. Along these lines, because of the potential for pleiotropic effects due to blocking autophagy through genetic manipulation, it is imperative to target by gene knockout or RNA interference more than one autophagy-related protein. In addition, some individual Atg proteins, or groups of proteins, are involved in other cellular pathways implying that not all Atg proteins can be used as a specific marker for an autophagic process. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular assays, we hope to encourage technical innovation in the field.

5,187 citations

Journal ArticleDOI
TL;DR: Highly photoluminescent carbon dots with a PL quantum yield of 26% have been prepared in one step by hydrothermal treatment of orange juice and demonstrated as excellent probes in cellular imaging.

1,314 citations

Journal ArticleDOI
TL;DR: The three neutral proteoglycans derived from the mushroom (P. ostreatus) mycelia could be used as immunomodulators and anti cancer agents, and showed the presence of large number of terminal sugar with glucose/mannose.

264 citations

Journal ArticleDOI
TL;DR: The review rationalizes that the choice of silk protein as a biomaterial is not onlyBecause of its natural polymeric nature, mechanical robustness, flexibility and wide range of cell compatibility but also because of its ability to template the growth of hydroxyapatite, the chief inorganic component of bone mineral matrix, resulting in improved osteointegration.

207 citations

Journal ArticleDOI
TL;DR: These nanoparticles were capable of target specific release of the loaded drug in response to pH and temperature and hence may serve as a potential drug carrier for in vivo applications.
Abstract: Targeted and efficient delivery of therapeutics to tumor cells is one of the key issues in cancer therapy. In the present work, we report a temperature and pH dual responsive core–shell nanoparticles comprising smart polymer shell coated on magnetic nanoparticles as an anticancer drug carrier and cancer cell-specific targeting agent. Magnetite nanoparticles (MNPs), prepared by a simple coprecipitation method, was surface modified by introducing amine groups using 3-aminopropyltriethoxysilane. Dual-responsive poly(N-isopropylacrylamide)-block-poly(acrylic acid) copolymer, synthesized by reversible addition-fragmentation chain transfer (RAFT) polymerization, was then attached to the amine-functionalized MNPs via EDC/NHS method. Further, to accomplish cancer-specific targeting properties, folic acid was tethered to the surface of the nanoparticles. Thereafter, rhodamine B isothiocyanate was conjugated to endow fluorescent property to the MNPs required for cellular imaging applications. The nanoparticles were...

192 citations


Cited by
More filters
Journal Article
TL;DR: This book by a teacher of statistics (as well as a consultant for "experimenters") is a comprehensive study of the philosophical background for the statistical design of experiment.
Abstract: THE DESIGN AND ANALYSIS OF EXPERIMENTS. By Oscar Kempthorne. New York, John Wiley and Sons, Inc., 1952. 631 pp. $8.50. This book by a teacher of statistics (as well as a consultant for \"experimenters\") is a comprehensive study of the philosophical background for the statistical design of experiment. It is necessary to have some facility with algebraic notation and manipulation to be able to use the volume intelligently. The problems are presented from the theoretical point of view, without such practical examples as would be helpful for those not acquainted with mathematics. The mathematical justification for the techniques is given. As a somewhat advanced treatment of the design and analysis of experiments, this volume will be interesting and helpful for many who approach statistics theoretically as well as practically. With emphasis on the \"why,\" and with description given broadly, the author relates the subject matter to the general theory of statistics and to the general problem of experimental inference. MARGARET J. ROBERTSON

13,333 citations

Journal ArticleDOI
TL;DR: The progress in the research and development of CQDs is reviewed with an emphasis on their synthesis, functionalization and technical applications along with some discussion on challenges and perspectives in this exciting and promising field.
Abstract: Fluorescent carbon nanoparticles or carbon quantum dots (CQDs) are a new class of carbon nanomaterials that have emerged recently and have garnered much interest as potential competitors to conventional semiconductor quantum dots. In addition to their comparable optical properties, CQDs have the desired advantages of low toxicity, environmental friendliness low cost and simple synthetic routes. Moreover, surface passivation and functionalization of CQDs allow for the control of their physicochemical properties. Since their discovery, CQDs have found many applications in the fields of chemical sensing, biosensing, bioimaging, nanomedicine, photocatalysis and electrocatalysis. This article reviews the progress in the research and development of CQDs with an emphasis on their synthesis, functionalization and technical applications along with some discussion on challenges and perspectives in this exciting and promising field.

3,514 citations

Journal ArticleDOI
Lorenzo Galluzzi1, Lorenzo Galluzzi2, Ilio Vitale3, Stuart A. Aaronson4  +183 moreInstitutions (111)
TL;DR: The Nomenclature Committee on Cell Death (NCCD) has formulated guidelines for the definition and interpretation of cell death from morphological, biochemical, and functional perspectives.
Abstract: Over the past decade, the Nomenclature Committee on Cell Death (NCCD) has formulated guidelines for the definition and interpretation of cell death from morphological, biochemical, and functional perspectives. Since the field continues to expand and novel mechanisms that orchestrate multiple cell death pathways are unveiled, we propose an updated classification of cell death subroutines focusing on mechanistic and essential (as opposed to correlative and dispensable) aspects of the process. As we provide molecularly oriented definitions of terms including intrinsic apoptosis, extrinsic apoptosis, mitochondrial permeability transition (MPT)-driven necrosis, necroptosis, ferroptosis, pyroptosis, parthanatos, entotic cell death, NETotic cell death, lysosome-dependent cell death, autophagy-dependent cell death, immunogenic cell death, cellular senescence, and mitotic catastrophe, we discuss the utility of neologisms that refer to highly specialized instances of these processes. The mission of the NCCD is to provide a widely accepted nomenclature on cell death in support of the continued development of the field.

3,301 citations

Journal ArticleDOI
TL;DR: A facile and highoutput strategy for the fabrication of CDs, which is suitable for industrial-scale production and is almost equal to fluorescent dyes, is discussed.
Abstract: Fluorescent carbon-based materials have drawn increasing attention in recent years owing to exceptional advantages such as high optical absorptivity, chemical stability, biocompatibility, and low toxicity. These materials primarily include carbon dots (CDs), nanodiamonds, carbon nanotubes, fullerene, and fluorescent graphene. The superior properties of fluorescent carbon-based materials distinguish them from traditional fluorescent materials, and make them promising candidates for numerous exciting applications, such as bioimaging, medical diagnosis, catalysis, and photovoltaic devices. Among all of these materials, CDs have drawn the most extensive notice, owing to their early discovery and adjustable parameters. However, many scientific issues with CDs still await further investigation. Currently, a broad series of methods for obtaining CD-based materials have been developed, but efficient one-step strategies for the fabrication of CDs on a large scale are still a challenge in this field. Current synthetic methods are mainly deficient in accurate control of lateral dimensions and the resulting surface chemistry, as well as in obtaining fluorescent materials with high quantum yields (QY). Moreover, it is important to expand these kinds of materials to novel applications. Herein, a facile and highoutput strategy for the fabrication of CDs, which is suitable for industrial-scale production (yield is ca. 58%), is discussed. The QY was as high as ca. 80%, which is the highest value recorded for fluorescent carbon-based materials, and is almost equal to fluorescent dyes. The polymer-like CDs were converted into carbogenic CDs by a change from low to high synthesis temperature. The photoluminescence (PL) mechanism (high QY/PL quenching) was investigated in detail by ultrafast spectroscopy. The CDs were applied as printing ink on the macro/micro scale and nanocomposites were also prepared by polymerizing CDs with certain polymers. Additionally, the CDs could be utilized as a biosensor reagent for the detection of Fe in biosystems. The CDs were prepared by a hydrothermal method, which is described in the Supporting Information (Figure 1a; see also the Supporting Information, Figure S1). The reaction was conducted by first condensing citric acid and ethylenediamine, whereupon they formed polymer-like CDs, which were then carbonized to form the CDs. The morphology and structure of CDs were confirmed by analysis. Figure 1b shows transmission electron microscopy (TEM) images of the CDs, which can be seen to have a uniform dispersion without apparent aggregation and particle diameters of 2–6 nm. The sizes of CDs were also measured by atomic force microscopy (AFM; Figure S2), and the average height was 2.81 nm. From the high-resolution TEM, most particles are observed to be amorphous carbon particles without any lattices; rare particles possess well-resolved lattice fringes. With such a low carbon-lattice-structure content, no obvious D or G bands were detected in the Raman spectra of the CDs (Figure S3). The XRD patterns of the CDs (Figure 1c) also displayed a broad peak centered at 258 (0.34 nm), which is also attributed to highly disordered carbon atoms. Moreover, NMR spectroscopy (H and C) was employed to distinguish sp-hybridized carbon atoms from sp-hybridized carbon atoms (Figure S4). In the H NMR spectrum, sp carbons were detected. In the C NMR spectrum, signals in the range of 30–45 ppm, which correspond to aliphatic (sp) carbon atoms, and signals from 100–185 ppm, which are indicative of sp carbon atoms, were observed. Signals in the range of 170– 185 ppm, which correspond to carboxyl/amide groups, were also present. In the FTIR analysis of CDs, the following were observed: stretching vibrations of C OH at 3430 cm 1 and C H at 2923 cm 1 and 2850 cm , asymmetric stretching vibrations of C-NH-C at 1126 cm , bending vibrations of N H at 1570 cm , and the vibrational absorption band of C=O at 1635 cm 1 (Figure S5). Moreover, the surface groups were also investigated by XPS analysis (Figure 1d). C1s analysis revealed three different types of carbon atoms: graphitic or aliphatic (C=C and C C), oxygenated, and nitrous (Table S1). In the UV/Vis spectra, the peak was focused on 344 nm in an aqueous solution of CDs. In the fluorescence spectra, CDs have optimal excitation and emission wavelengths at 360 nm and 443 nm, and show a blue color under a hand-held UV lamp (Figure 2a). Excitation-dependent PL behavior was [*] S. Zhu, Q. Meng, Prof. J. Zhang, Y. Song, Prof. K. Zhang, Prof. B. Yang State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University Changchun, 130012 (P. R. China) E-mail: byangchem@jlu.edu.cn

3,095 citations

Journal ArticleDOI
TL;DR: This review discusses various nanomaterials that have been explored to mimic different kinds of enzymes and covers their kinetics, mechanisms and applications in numerous fields, from biosensing and immunoassays, to stem cell growth and pollutant removal.
Abstract: Over the past few decades, researchers have established artificial enzymes as highly stable and low-cost alternatives to natural enzymes in a wide range of applications. A variety of materials including cyclodextrins, metal complexes, porphyrins, polymers, dendrimers and biomolecules have been extensively explored to mimic the structures and functions of naturally occurring enzymes. Recently, some nanomaterials have been found to exhibit unexpected enzyme-like activities, and great advances have been made in this area due to the tremendous progress in nano-research and the unique characteristics of nanomaterials. To highlight the progress in the field of nanomaterial-based artificial enzymes (nanozymes), this review discusses various nanomaterials that have been explored to mimic different kinds of enzymes. We cover their kinetics, mechanisms and applications in numerous fields, from biosensing and immunoassays, to stem cell growth and pollutant removal. We also summarize several approaches to tune the activities of nanozymes. Finally, we make comparisons between nanozymes and other catalytic materials (other artificial enzymes, natural enzymes, organic catalysts and nanomaterial-based catalysts) and address the current challenges and future directions (302 references).

2,951 citations