scispace - formally typeset
Search or ask a question
Author

Tapas K. Mallick

Bio: Tapas K. Mallick is an academic researcher from University of Exeter. The author has contributed to research in topics: Photovoltaic system & Concentrator. The author has an hindex of 44, co-authored 315 publications receiving 7286 citations. Previous affiliations of Tapas K. Mallick include Ulster University & University of Warwick.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a review of recent research in Building Integrated Photovoltaics (BIPV) is presented with the emphases on a range of key systems whose improvement would be likely to lead to improved solar energy conversion efficiency and/or economic viability.

318 citations

Journal ArticleDOI
TL;DR: In this article, the causes and effects of non-uniformity in photovoltaics (CPV) systems are reviewed and a few methods of improving the CPV performance are proposed.
Abstract: After a gap of more than two decades, Concentrator Photovoltaics (CPV) technology is once again under spotlight for making use of the best available solar cell technologies and improving the overall performance. CPV finds its use in a number of applications ranging from building integration to huge power generation units. Although the principles of solar concentration are well understood, many practical design, operation, control issues require further understanding and research. A particular issue for CPV technology is the non-uniformity of the incident flux which tends to cause hot spots, current mismatch and reduce the overall efficiency of the system. Understanding of this effect requires further research, and shall help to employ the most successful means of using solar concentrators. This study reviews the causes and effects of the non-uniformity in the CPV systems. It highlights the importance of this issue in solar cell design and reviews the methods for the solar cell characterization under non-uniform flux conditions. Finally, it puts forward a few methods of improving the CPV performance by reducing the non-uniformity effect on the concentrator solar cells. © 2012 Elsevier Ltd.

260 citations

Journal ArticleDOI
TL;DR: The use of synthetic dyes as sensitizer in DSSC provides better efficiency and high durability, but they suffer from several limitations such as higher cost, tendency to undergo degradation, and usage of toxic materials.
Abstract: Dye sensitized solar cells (DSSC) have become a topic of significant research in the last two decades because of their fundamental and scientific importance in the area of energy conversion. Ease of fabrication with widely available materials coupled with reasonable efficiency has made DSSC a promising candidate in low cost solar cells and its research. The use of synthetic dyes as sensitizer in DSSC provide better efficiency and high durability, but they suffer from several limitations such as higher cost, tendency to undergo degradation, and usage of toxic materials. These limitations have opened up for alternate sensitizers that are bio compatible natural sensitizers. Natural sensitizers contain plant pigments such as anthocyanin, carotenoid, flavonoid, and chlorophyll that are responsible for chemical reactions such as absorption of light as well as injection of charges to the conduction band of TiO2 by the sensitizer. Therefore, dyes containing these pigments can easily be extracted from natural products like fruits, flowers, leaves, seeds, barks etc and can be employed as sensitizer for DSSC. The main objective of this review is to discuss the operation of natural dye based DSSC along with the various components that are present in it. It also details and tabulates the various plant pigments present in the natural products which are employed as sensitizer in DSSC. Furthermore, a detailed summary of the work carried out by different research groups on natural dye based DSSC is also reviewed. Issues on stability and future development of natural dye based DSSCs have been addressed.

231 citations

Journal ArticleDOI
TL;DR: In this article, a review of different types of concentration photovoltaic (CPV) systems, their various design advantages and limitations, and noticeable trends is presented. But the focus of this review is on the optical properties of the concentrators.
Abstract: Concentrating photovoltaic (CPV) systems are a key step in expanding the use of solar energy. Solar cells can operate at increased efficiencies under higher solar concentration and replacing solar cells with optical devices to capture light is an effective method of decreasing the cost of a system without compromising the amount of solar energy absorbed. However, CPV systems are still in a stage of development where new designs, methods and materials are still being created in order to reach a low levelled cost of energy comparable to standard silicon based PV systems. This article outlines the different types of concentration photovoltaic systems, their various design advantages and limitations, and noticeable trends. This will include comparisons on materials used, optical efficiency and optical tolerance (acceptance angle). As well as reviewing the recent development in the most commonly used and most established designs such as the Fresnel lens and parabolic trough/dish, novel optics and materials are also suggested. The aim of this review is to provide the reader with an understanding of the many types of solar concentrators and their reported advantages and disadvantages. This review should aid the development of solar concentrator optics by highlighting the successful trends and emphasising the importance of novel designs and materials in need of further research. There is a vast opportunity for solar concentrator designs to expand into other scientific fields and take advantage of these developed resources. Solar concentrator technologies have many layers and factors to be considered when designing. This review attempts to simplify and categorise these layers and stresses the significance of comparing as many of the applicable factors as possible when choosing the right design for an application. From this review, it has been ascertained that higher concentration levels are being achieved and will likely continue to increase as high performance high concentration designs are developed. Fresnel lenses have been identified as having a greater optical tolerance than reflective parabolic concentrators but more complex homogenisers are being developed for both system types which improve multiple performance factors. Trends towards higher performance solar concentrator designs include the use of micro-patterned structures and attention to detailed design such as tailoring secondary optics to primary optics and vice-versa. There is still a vast potential for what materials and surface structures could be utilised for solar concentrator designs especially if inspiration is taken from biological structures already proven to manipulate light in nature.

214 citations

Journal ArticleDOI
TL;DR: In this article, a review of metal-containing dye types and their heavy metal ions pollution from entryway to the wastewater, which briefly explored the effects on human health and the environment is discussed.
Abstract: Textile wastewater heavy metal pollution has become a severe environmental problem worldwide. Metal ion inclusion in a dye molecule exhibits a bathochromic shift producing deeper but duller shades, which provides excellent colouration. The ejection of a massive volume of wastewater containing heavy metal ions such as Cr (VI), Pb (II), Cd (II) and Zn (II) and metal-containing dyes are an unavoidable consequence because the textile industry consumes large quantities of water and all these chemicals cannot be combined entirely with fibres during the dyeing process. These high concentrations of chemicals in effluents interfere with the natural water resources, cause severe toxicological implications on the environment with a dramatic impact on human health. This article reviewed the various metal-containing dye types and their heavy metal ions pollution from entryway to the wastewater, which then briefly explored the effects on human health and the environment. Graphene-based absorbers, specially graphene oxide (GO) benefits from an ordered structured, high specific surface area, and flexible surface functionalization options, which are indispensable to realize a high performance of heavy metal ion removal. These exceptional adsorption properties of graphene-based materials support a position of ubiquity in our everyday lives. The collective representation of the textile wastewater's effective remediation methods is discussed and focused on the GO-based adsorption methods. Understanding the critical impact regarding the GO-based materials established adsorption portfolio for heavy metal ions removal are also discussed. Various heavy-metal ions and their pollutant effect, ways to remove such heavy metal ions and role of graphene-based adsorbent including their demand, perspective, limitation, and relative scopes are discussed elaborately in the review.

211 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

01 May 1993
TL;DR: Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems.
Abstract: Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of inter-atomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dynamics models which can be difficult to parallelize efficiently—those with short-range forces where the neighbors of each atom change rapidly. They can be implemented on any distributed-memory parallel machine which allows for message-passing of data between independently executing processors. The algorithms are tested on a standard Lennard-Jones benchmark problem for system sizes ranging from 500 to 100,000,000 atoms on several parallel supercomputers--the nCUBE 2, Intel iPSC/860 and Paragon, and Cray T3D. Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems. For large problems, the spatial algorithm achieves parallel efficiencies of 90% and a 1840-node Intel Paragon performs up to 165 faster than a single Cray C9O processor. Trade-offs between the three algorithms and guidelines for adapting them to more complex molecular dynamics simulations are also discussed.

29,323 citations

01 Jan 2015
TL;DR: The work of the IPCC Working Group III 5th Assessment report as mentioned in this paper is a comprehensive, objective and policy neutral assessment of the current scientific knowledge on mitigating climate change, which has been extensively reviewed by experts and governments to ensure quality and comprehensiveness.
Abstract: The talk with present the key results of the IPCC Working Group III 5th assessment report. Concluding four years of intense scientific collaboration by hundreds of authors from around the world, the report responds to the request of the world's governments for a comprehensive, objective and policy neutral assessment of the current scientific knowledge on mitigating climate change. The report has been extensively reviewed by experts and governments to ensure quality and comprehensiveness.

3,224 citations