scispace - formally typeset
Search or ask a question
Author

Taras K. Oleksyk

Bio: Taras K. Oleksyk is an academic researcher from University of Puerto Rico at Mayagüez. The author has contributed to research in topics: Population & Genome. The author has an hindex of 23, co-authored 48 publications receiving 15988 citations. Previous affiliations of Taras K. Oleksyk include Science Applications International Corporation & Oakland University.


Papers
More filters
Journal ArticleDOI
Adam Auton1, Gonçalo R. Abecasis2, David Altshuler3, Richard Durbin4  +514 moreInstitutions (90)
01 Oct 2015-Nature
TL;DR: The 1000 Genomes Project set out to provide a comprehensive description of common human genetic variation by applying whole-genome sequencing to a diverse set of individuals from multiple populations, and has reconstructed the genomes of 2,504 individuals from 26 populations using a combination of low-coverage whole-generation sequencing, deep exome sequencing, and dense microarray genotyping.
Abstract: The 1000 Genomes Project set out to provide a comprehensive description of common human genetic variation by applying whole-genome sequencing to a diverse set of individuals from multiple populations. Here we report completion of the project, having reconstructed the genomes of 2,504 individuals from 26 populations using a combination of low-coverage whole-genome sequencing, deep exome sequencing, and dense microarray genotyping. We characterized a broad spectrum of genetic variation, in total over 88 million variants (84.7 million single nucleotide polymorphisms (SNPs), 3.6 million short insertions/deletions (indels), and 60,000 structural variants), all phased onto high-quality haplotypes. This resource includes >99% of SNP variants with a frequency of >1% for a variety of ancestries. We describe the distribution of genetic variation across the global sample, and discuss the implications for common disease studies.

12,661 citations

01 Oct 2015
TL;DR: The 1000 Genomes Project as mentioned in this paper provided a comprehensive description of common human genetic variation by applying whole-genome sequencing to a diverse set of individuals from multiple populations, and reported the completion of the project, having reconstructed the genomes of 2,504 individuals from 26 populations using a combination of low-coverage whole genome sequencing, deep exome sequencing and dense microarray genotyping.
Abstract: The 1000 Genomes Project set out to provide a comprehensive description of common human genetic variation by applying whole-genome sequencing to a diverse set of individuals from multiple populations. Here we report completion of the project, having reconstructed the genomes of 2,504 individuals from 26 populations using a combination of low-coverage whole-genome sequencing, deep exome sequencing, and dense microarray genotyping. We characterized a broad spectrum of genetic variation, in total over 88 million variants (84.7 million single nucleotide polymorphisms (SNPs), 3.6 million short insertions/deletions (indels), and 60,000 structural variants), all phased onto high-quality haplotypes. This resource includes >99% of SNP variants with a frequency of >1% for a variety of ancestries. We describe the distribution of genetic variation across the global sample, and discuss the implications for common disease studies.

3,247 citations

Journal ArticleDOI
13 Aug 2010-Science
TL;DR: This article showed that focal segmental glomerulosclerosis (FSGS) and hypertension-attributed end-stage kidney disease (H-ESKD) are associated with two independent sequence variants in the APOL1 gene on chromosome 22.
Abstract: African Americans have higher rates of kidney disease than European Americans. Here, we show that, in African Americans, focal segmental glomerulosclerosis (FSGS) and hypertension-attributed end-stage kidney disease (H-ESKD) are associated with two independent sequence variants in the APOL1 gene on chromosome 22 {FSGS odds ratio = 10.5 [95% confidence interval (CI) 6.0 to 18.4]; H-ESKD odds ratio = 7.3 (95% CI 5.6 to 9.5)}. The two APOL1 variants are common in African chromosomes but absent from European chromosomes, and both reside within haplotypes that harbor signatures of positive selection. ApoL1 (apolipoprotein L-1) is a serum factor that lyses trypanosomes. In vitro assays revealed that only the kidney disease-associated ApoL1 variants lysed Trypanosoma brucei rhodesiense. We speculate that evolution of a critical survival factor in Africa may have contributed to the high rates of renal disease in African Americans.

1,539 citations

01 Jan 2010
TL;DR: In African Americans, focal segmental glomerulosclerosis and hypertension-attributed end-stage kidney disease (H-ESKD) are associated with two independent sequence variants in the APOL1 gene on chromosome 22, which speculate that evolution of a critical survival factor in Africa may have contributed to the high rates of renal disease in African Americans.
Abstract: African Americans have higher rates of kidney disease than European Americans. Here, we show that, in African Americans, focal segmental glomerulosclerosis (FSGS) and hypertension-attributed end-stage kidney disease (H-ESKD) are associated with two independent sequence variants in the APOL1 gene on chromosome 22 {FSGS odds ratio = 10.5 (95% confidence interval (CI) 6.0 to 18.4); H-ESKD odds ratio = 7.3 (95% CI 5.6 to 9.5)}. The two APOL1 variants are common in African chromosomes but absent from European chromosomes, and both reside within haplotypes that harbor signatures of positive selection. ApoL1 (apolipoprotein L-1) is a serum factor that lyses trypanosomes. In vitro assays revealed that only the kidney disease-associated ApoL1 variants lysed Trypanosoma brucei rhodesiense. We speculate that evolution of a critical survival factor in Africa may have contributed to the high rates of renal disease in African Americans.

1,445 citations

Journal ArticleDOI
TL;DR: Genetic variation at the MYH9 locus substantially explains the increased burden of FSGS and hypertensive ESKD among African Americans.
Abstract: The increased burden of chronic kidney and end-stage kidney diseases (ESKD) in populations of African ancestry has been largely unexplained. To identify genetic variants predisposing to idiopathic and HIV-1–associated focal segmental glomerulosclerosis (FSGS), we carried out an admixture-mapping linkage-disequilibrium genome scan on 190 African American individuals with FSGS and 222 controls. We identified a chromosome 22 region with a genome-wide logarithm of the odds (lod) score of 9.2 and a peak lod of 12.4 centered on MYH9, a functional candidate gene expressed in kidney podocytes. Multiple MYH9 SNPs and haplotypes were recessively associated with FSGS, most strongly a haplotype spanning exons 14 through 23 (OR ¼ 5.0, 95% CI ¼ 3.5–7.1; P ¼ 4 � 10 � 23 , n ¼ 852). This association extended to hypertensive ESKD (OR ¼ 2.2, 95% CI ¼ 1.5–3.4; n ¼ 433), but not type 2 diabetic ESKD (n ¼ 476). Genetic variation at the MYH9 locus substantially explains the increased burden of FSGS and hypertensive ESKD among African Americans.

679 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Preface to the Princeton Landmarks in Biology Edition vii Preface xi Symbols used xiii 1.
Abstract: Preface to the Princeton Landmarks in Biology Edition vii Preface xi Symbols Used xiii 1. The Importance of Islands 3 2. Area and Number of Speicies 8 3. Further Explanations of the Area-Diversity Pattern 19 4. The Strategy of Colonization 68 5. Invasibility and the Variable Niche 94 6. Stepping Stones and Biotic Exchange 123 7. Evolutionary Changes Following Colonization 145 8. Prospect 181 Glossary 185 References 193 Index 201

14,171 citations

Journal Article
Fumio Tajima1
30 Oct 1989-Genomics
TL;DR: It is suggested that the natural selection against large insertion/deletion is so weak that a large amount of variation is maintained in a population.

11,521 citations

01 Jun 2012
TL;DR: SPAdes as mentioned in this paper is a new assembler for both single-cell and standard (multicell) assembly, and demonstrate that it improves on the recently released E+V-SC assembler and on popular assemblers Velvet and SoapDeNovo (for multicell data).
Abstract: The lion's share of bacteria in various environments cannot be cloned in the laboratory and thus cannot be sequenced using existing technologies. A major goal of single-cell genomics is to complement gene-centric metagenomic data with whole-genome assemblies of uncultivated organisms. Assembly of single-cell data is challenging because of highly non-uniform read coverage as well as elevated levels of sequencing errors and chimeric reads. We describe SPAdes, a new assembler for both single-cell and standard (multicell) assembly, and demonstrate that it improves on the recently released E+V-SC assembler (specialized for single-cell data) and on popular assemblers Velvet and SoapDeNovo (for multicell data). SPAdes generates single-cell assemblies, providing information about genomes of uncultivatable bacteria that vastly exceeds what may be obtained via traditional metagenomics studies. SPAdes is available online ( http://bioinf.spbau.ru/spades ). It is distributed as open source software.

10,124 citations

Journal ArticleDOI
Monkol Lek, Konrad J. Karczewski1, Konrad J. Karczewski2, Eric Vallabh Minikel1, Eric Vallabh Minikel2, Kaitlin E. Samocha, Eric Banks1, Timothy Fennell1, Anne H. O’Donnell-Luria2, Anne H. O’Donnell-Luria3, Anne H. O’Donnell-Luria1, James S. Ware, Andrew J. Hill1, Andrew J. Hill2, Andrew J. Hill4, Beryl B. Cummings1, Beryl B. Cummings2, Taru Tukiainen1, Taru Tukiainen2, Daniel P. Birnbaum1, Jack A. Kosmicki, Laramie E. Duncan1, Laramie E. Duncan2, Karol Estrada1, Karol Estrada2, Fengmei Zhao1, Fengmei Zhao2, James Zou1, Emma Pierce-Hoffman2, Emma Pierce-Hoffman1, Joanne Berghout5, David Neil Cooper6, Nicole A. Deflaux7, Mark A. DePristo1, Ron Do, Jason Flannick2, Jason Flannick1, Menachem Fromer, Laura D. Gauthier1, Jackie Goldstein1, Jackie Goldstein2, Namrata Gupta1, Daniel P. Howrigan2, Daniel P. Howrigan1, Adam Kiezun1, Mitja I. Kurki1, Mitja I. Kurki2, Ami Levy Moonshine1, Pradeep Natarajan, Lorena Orozco, Gina M. Peloso2, Gina M. Peloso1, Ryan Poplin1, Manuel A. Rivas1, Valentin Ruano-Rubio1, Samuel A. Rose1, Douglas M. Ruderfer8, Khalid Shakir1, Peter D. Stenson6, Christine Stevens1, Brett Thomas2, Brett Thomas1, Grace Tiao1, María Teresa Tusié-Luna, Ben Weisburd1, Hong-Hee Won9, Dongmei Yu, David Altshuler10, David Altshuler1, Diego Ardissino, Michael Boehnke11, John Danesh12, Stacey Donnelly1, Roberto Elosua, Jose C. Florez1, Jose C. Florez2, Stacey Gabriel1, Gad Getz2, Gad Getz1, Stephen J. Glatt13, Christina M. Hultman14, Sekar Kathiresan, Markku Laakso15, Steven A. McCarroll2, Steven A. McCarroll1, Mark I. McCarthy16, Mark I. McCarthy17, Dermot P.B. McGovern18, Ruth McPherson19, Benjamin M. Neale2, Benjamin M. Neale1, Aarno Palotie, Shaun Purcell8, Danish Saleheen20, Jeremiah M. Scharf, Pamela Sklar, Patrick F. Sullivan14, Patrick F. Sullivan21, Jaakko Tuomilehto22, Ming T. Tsuang23, Hugh Watkins17, Hugh Watkins16, James G. Wilson24, Mark J. Daly1, Mark J. Daly2, Daniel G. MacArthur2, Daniel G. MacArthur1 
18 Aug 2016-Nature
TL;DR: The aggregation and analysis of high-quality exome (protein-coding region) DNA sequence data for 60,706 individuals of diverse ancestries generated as part of the Exome Aggregation Consortium (ExAC) provides direct evidence for the presence of widespread mutational recurrence.
Abstract: Large-scale reference data sets of human genetic variation are critical for the medical and functional interpretation of DNA sequence changes. Here we describe the aggregation and analysis of high-quality exome (protein-coding region) DNA sequence data for 60,706 individuals of diverse ancestries generated as part of the Exome Aggregation Consortium (ExAC). This catalogue of human genetic diversity contains an average of one variant every eight bases of the exome, and provides direct evidence for the presence of widespread mutational recurrence. We have used this catalogue to calculate objective metrics of pathogenicity for sequence variants, and to identify genes subject to strong selection against various classes of mutation; identifying 3,230 genes with near-complete depletion of predicted protein-truncating variants, with 72% of these genes having no currently established human disease phenotype. Finally, we demonstrate that these data can be used for the efficient filtering of candidate disease-causing variants, and for the discovery of human 'knockout' variants in protein-coding genes.

8,758 citations

Journal ArticleDOI
28 Oct 2010-Nature
TL;DR: The 1000 Genomes Project aims to provide a deep characterization of human genome sequence variation as a foundation for investigating the relationship between genotype and phenotype as mentioned in this paper, and the results of the pilot phase of the project, designed to develop and compare different strategies for genomewide sequencing with high-throughput platforms.
Abstract: The 1000 Genomes Project aims to provide a deep characterization of human genome sequence variation as a foundation for investigating the relationship between genotype and phenotype. Here we present results of the pilot phase of the project, designed to develop and compare different strategies for genome-wide sequencing with high-throughput platforms. We undertook three projects: low-coverage whole-genome sequencing of 179 individuals from four populations; high-coverage sequencing of two mother-father-child trios; and exon-targeted sequencing of 697 individuals from seven populations. We describe the location, allele frequency and local haplotype structure of approximately 15 million single nucleotide polymorphisms, 1 million short insertions and deletions, and 20,000 structural variants, most of which were previously undescribed. We show that, because we have catalogued the vast majority of common variation, over 95% of the currently accessible variants found in any individual are present in this data set. On average, each person is found to carry approximately 250 to 300 loss-of-function variants in annotated genes and 50 to 100 variants previously implicated in inherited disorders. We demonstrate how these results can be used to inform association and functional studies. From the two trios, we directly estimate the rate of de novo germline base substitution mutations to be approximately 10(-8) per base pair per generation. We explore the data with regard to signatures of natural selection, and identify a marked reduction of genetic variation in the neighbourhood of genes, due to selection at linked sites. These methods and public data will support the next phase of human genetic research.

7,538 citations