scispace - formally typeset
Search or ask a question
Author

Tarasankar Pal

Bio: Tarasankar Pal is an academic researcher from Indian Institute of Technology Kharagpur. The author has contributed to research in topics: Nanoparticle & Catalysis. The author has an hindex of 66, co-authored 319 publications receiving 19846 citations. Previous affiliations of Tarasankar Pal include Oak Ridge National Laboratory & University of Texas at El Paso.


Papers
More filters
Journal ArticleDOI
TL;DR: This paper presents a meta-analysis of four-Wave Mixing and its applications in nanofiltration, which shows clear trends in high-performance liquid chromatography and also investigates the role of nano-magnifying lens technology in this process.
Abstract: 12.2.2. Four-Wave Mixing (FWM) 4849 12.2.3. Dye Aggregation 4850 12.2.4. Optoelectronic Nanodevices 4850 12.3. Sensor 4851 12.3.1. Chemical Sensor 4851 12.3.2. Biological Sensor 4851 12.4. Catalysis 4852 13. Conclusion and Perspectives 4852 14. Abbreviations 4853 15. Acknowledgements 4854 16. References 4854 * Corresponding author E-mail: tpal@chem.iitkgp.ernet.in. † Raidighi College. § Indian Institute of Technology. 4797 Chem. Rev. 2007, 107, 4797−4862

2,414 citations

Journal ArticleDOI
16 Feb 2010-Langmuir
TL;DR: The as-prepared new solid-phase biopolymer-based catalysts are very efficient, stable, easy to prepare, eco-friendly, and cost-effective, and they have the potential for industrial applications.
Abstract: Silver and gold nanoparticles have been grown on calcium alginate gel beads using a green photochemical approach. The gel served as both a reductant and a stabilizer. The nanoparticles were characterized using UV−visible spectroscopy, X-ray diffraction (XRD), scanning and transmission electron microscopy (SEM and TEM), energy dispersive X-ray (EDS), and selected area electron diffraction (SAED) analyses. The particles are spherical, crystalline, and the size ranges for both Ag and Au nanoparticles are <10 nm. It is noticed from the sorption experiment that the loading of gold on calcium alginate beads is much more compared to that of Ag. The effectiveness of the as-prepared dried alginate-stabilized Ag and Au nanoparticles as a solid phase heterogeneous catalyst has been evaluated, for the first time, on the well-known 4-nitrophenol (4-NP) reduction to 4-aminophenol (4-AP) in the presence of excess borohydride. The reduction was very efficient and followed zero-order kinetics for both Ag and Au nanocompos...

886 citations

Journal ArticleDOI
TL;DR: In this article, the plasmon band of the silver metal nanoparticles formed in situ are the active catalyst for reducing aromatic nitro compounds to amines in aqueous medium.

865 citations

Journal ArticleDOI
TL;DR: In this article, a core-shell nanocomposites (R−Au) bearing well-defined gold nanoparticles as surface atoms of variable sizes (8−55 nm) have been synthesized exploiting polystyrene-based commercial anion exchangers.
Abstract: Core−shell nanocomposites (R−Au) bearing well-defined gold nanoparticles as surface atoms of variable sizes (8−55 nm) have been synthesized exploiting polystyrene-based commercial anion exchangers. Immobilization of gold nanoparticles, prepared by the Frens method, onto the resin beads in the chloride form is possible by the ready exchange of the citrate-capped negatively charged gold particles. The difficulty of nanoparticle loading, avoiding aggregation, has been solved by stepwise operation. Analysis of the gold particles after immobilization and successive elution confirm the unaltered particle morphology while compared to those of the citrate-capped gold particles in colloidal dispersion. It was observed that the rate of the reaction increases with the increase in catalyst loading, which suggests the catalytic behavior of the gold nanoparticles for the reduction of the aromatic nitrocompounds. The rate constant, k, was found to be proportional to the total surface area of the nanoparticles in the sys...

739 citations

Journal ArticleDOI
TL;DR: The reaction kinetics is discussed considering its elegance and importance enlightening the long known Langmuir-Hinshelwood mechanism and Eley-Rideal mechanism at length, along with a few other mechanisms recently reported.

609 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Journal ArticleDOI
TL;DR: A review of gold nanoparticles can be found in this article, where the most stable metal nanoparticles, called gold colloids (AuNPs), have been used for catalysis and biology applications.
Abstract: Although gold is the subject of one of the most ancient themes of investigation in science, its renaissance now leads to an exponentially increasing number of publications, especially in the context of emerging nanoscience and nanotechnology with nanoparticles and self-assembled monolayers (SAMs). We will limit the present review to gold nanoparticles (AuNPs), also called gold colloids. AuNPs are the most stable metal nanoparticles, and they present fascinating aspects such as their assembly of multiple types involving materials science, the behavior of the individual particles, size-related electronic, magnetic and optical properties (quantum size effect), and their applications to catalysis and biology. Their promises are in these fields as well as in the bottom-up approach of nanotechnology, and they will be key materials and building block in the 21st century. Whereas the extraction of gold started in the 5th millennium B.C. near Varna (Bulgaria) and reached 10 tons per year in Egypt around 1200-1300 B.C. when the marvelous statue of Touthankamon was constructed, it is probable that “soluble” gold appeared around the 5th or 4th century B.C. in Egypt and China. In antiquity, materials were used in an ecological sense for both aesthetic and curative purposes. Colloidal gold was used to make ruby glass 293 Chem. Rev. 2004, 104, 293−346

11,752 citations

Journal ArticleDOI
TL;DR: The interest in nanoscale materials stems from the fact that new properties are acquired at this length scale and, equally important, that these properties are equally important.
Abstract: The interest in nanoscale materials stems from the fact that new properties are acquired at this length scale and, equally important, that these properties * To whom correspondence should be addressed. Phone, 404-8940292; fax, 404-894-0294; e-mail, mostafa.el-sayed@ chemistry.gatech.edu. † Case Western Reserve UniversitysMillis 2258. ‡ Phone, 216-368-5918; fax, 216-368-3006; e-mail, burda@case.edu. § Georgia Institute of Technology. 1025 Chem. Rev. 2005, 105, 1025−1102

6,852 citations

Journal ArticleDOI
TL;DR: A comprehensive review of current research activities that center on the shape-controlled synthesis of metal nanocrystals, including a brief introduction to nucleation and growth within the context of metal Nanocrystal synthesis, followed by a discussion of the possible shapes that aMetal nanocrystal might take under different conditions.
Abstract: Nanocrystals are fundamental to modern science and technology. Mastery over the shape of a nanocrystal enables control of its properties and enhancement of its usefulness for a given application. Our aim is to present a comprehensive review of current research activities that center on the shape-controlled synthesis of metal nanocrystals. We begin with a brief introduction to nucleation and growth within the context of metal nanocrystal synthesis, followed by a discussion of the possible shapes that a metal nanocrystal might take under different conditions. We then focus on a variety of experimental parameters that have been explored to manipulate the nucleation and growth of metal nanocrystals in solution-phase syntheses in an effort to generate specific shapes. We then elaborate on these approaches by selecting examples in which there is already reasonable understanding for the observed shape control or at least the protocols have proven to be reproducible and controllable. Finally, we highlight a number of applications that have been enabled and/or enhanced by the shape-controlled synthesis of metal nanocrystals. We conclude this article with personal perspectives on the directions toward which future research in this field might take.

4,927 citations