scispace - formally typeset
Search or ask a question
Author

Tariq Mahmood

Bio: Tariq Mahmood is an academic researcher from COMSATS Institute of Information Technology. The author has contributed to research in topics: Hyperpolarizability & Density functional theory. The author has an hindex of 24, co-authored 165 publications receiving 1853 citations. Previous affiliations of Tariq Mahmood include Allama Iqbal Open University & Imperial College London.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a series of inorganic electrides (Li2F, Li3O and Li4N) are designed by doping of Al12P12 nanocluster with superalkalis and studied through density functional theory (DFT) for their geometrical, electronic and nonlinear optical properties.

89 citations

Journal ArticleDOI
TL;DR: The interaction energies calculated at M05-2X/6-31++G (d, p) level of theory, suggest stronger interaction of cyanine dyes with DNA nitrogenous basis, and red shift in UV-Vis spectrum is obtained upon interaction with nucleic basis.

73 citations

Journal ArticleDOI
TL;DR: A comparative theoretical and experimental study of four triazine-based hydrazone derivatives, synthesized by a three step process from commercially available benzil and thiosemicarbazide, showing excellent correlations with the results obtained from X-ray diffraction studies.
Abstract: We report here a comparative theoretical and experimental study of four triazine-based hydrazone derivatives. The hydrazones are synthesized by a three step process from commercially available benzil and thiosemicarbazide. The structures of all compounds were determined by using the UV-Vis., FT-IR, NMR (1H and 13C) spectroscopic techniques and finally confirmed unequivocally by single crystal X-ray diffraction analysis. Experimental geometric parameters and spectroscopic properties of the triazine based hydrazones are compared with those obtained from density functional theory (DFT) studies. The model developed here comprises of geometry optimization at B3LYP/6-31G (d, p) level of DFT. Optimized geometric parameters of all four compounds showed excellent correlations with the results obtained from X-ray diffraction studies. The vibrational spectra show nice correlations with the experimental IR spectra. Moreover, the simulated absorption spectra also agree well with experimental results (within 10–20 nm). The molecular electrostatic potential (MEP) mapped over the entire stabilized geometries of the compounds indicated their chemical reactivates. Furthermore, frontier molecular orbital (electronic properties) and first hyperpolarizability (nonlinear optical response) were also computed at the B3LYP/6-31G (d, p) level of theory.

72 citations

Journal ArticleDOI
TL;DR: The findings of the work clearly suggest that the cyclic geometry enhances not only sensitivity but also selectivity of conducting polymers (oligofuran).
Abstract: This study presents a novel approach for exploring the sensitivity and selectivity of cyclic oligofuran (5/6/7CF) toward gaseous analytes and their comparison with straight chain analogues (5/6/7SF). The work is not only vital to understand the superior sensitivity but also for rational design of new sensors based on cyclic ring structures of oligofuran. Interaction of cyclic and straight chain oligofuran with NH3, CO, CO2, N2H4, HCN, H2O2, H2S, CH4, CH3OH, SO2, SO3 and H2O analytes is studied via DFT calculation at B3LYP-D3/6–31++G (d, p) level of theory. The sensitivity and selectivity are illustrated by the thermodynamic parameters (Ebind, SAPT0 energies, NCI analysis), electronic properties (H-L gap, percentage of average energy gap, CHELPG charge transfer, DOS spectra), and UV–Vis analysis. All these properties are simulated at B3LYP/6-31G (d) level of theory while UV–Vis is calculated at TD-DFT method. Cyclic oligofurans have high binding energies with analytes compared to 5/6/7SF which corresponds to higher sensitivity of 5/6/7CF. Furthermore, the cyclization of oligofuran significantly improves the sensitivity and selectivity of the system. Alteration in electronic properties of 5/6/7CF and 5/6/7SF is remarkably high upon complexation with SO2 and SO3. Further the stability of rings (5, 6 and 7 membered cyclic oligofurans) and their SO3 complexes is also confirmed by molecular dynamics calculations. The findings of the work clearly suggest that the cyclic geometry enhances not only sensitivity but also selectivity of conducting polymers (oligofuran).

67 citations

Journal ArticleDOI
TL;DR: In this paper, the electronic and nonlinear optical properties of a novel class of superalkalis (Li2F, Li3O and Li4N) doped silicon carbide (Si12C12) nanocages are investigated by using density functional theory (DFT) calculations.
Abstract: In this study, the electronic and nonlinear optical (NLO) properties of a novel class of superalkalis (Li2F, Li3O and Li4N) doped silicon carbide (Si12C12) nanocages are investigated by using density functional theory (DFT) calculations. Computational results reveal that these complexes are quite stable and superalkalis prefer Sitop position of the nanocage energetically to be chemisorbed. The doping of superalkalis effectively reduced the HOMO–LUMO energy gap and transformed Si12C12 nanocage from insulator to n-type semiconductor. More interestingly, these complexes exhibited significantly large first hyperpolarizabilities (βo) in the range of 2141–19864 au. This remarkable increase in first hyperpolarizability (βo) values is due to small transition energies ΔE, which comes from the corresponding charge transfer from superalkali to the nanocage. The NLO response of the superalkali-doped Si12C12 nanocage was much better to those of their alkali-metal-doped analogs. Moreover, frequency dependent hyperpolarizability calculations are performed in the range of 400–1600 nm including 532 and 1064 nm for commonly used lasers. The TD-DFT analysis reveals that these complexes possess enough transparency in the UV region which is required besides large NLO response for practical applications in the field of opto-electronics. This study will provide new insights for designing of novel NLO materials having useful applications in all-optical switching, wavelength conversion and harmonic generation.

65 citations


Cited by
More filters
Journal Article
TL;DR: For the next few weeks the course is going to be exploring a field that’s actually older than classical population genetics, although the approach it’ll be taking to it involves the use of population genetic machinery.
Abstract: So far in this course we have dealt entirely with the evolution of characters that are controlled by simple Mendelian inheritance at a single locus. There are notes on the course website about gametic disequilibrium and how allele frequencies change at two loci simultaneously, but we didn’t discuss them. In every example we’ve considered we’ve imagined that we could understand something about evolution by examining the evolution of a single gene. That’s the domain of classical population genetics. For the next few weeks we’re going to be exploring a field that’s actually older than classical population genetics, although the approach we’ll be taking to it involves the use of population genetic machinery. If you know a little about the history of evolutionary biology, you may know that after the rediscovery of Mendel’s work in 1900 there was a heated debate between the “biometricians” (e.g., Galton and Pearson) and the “Mendelians” (e.g., de Vries, Correns, Bateson, and Morgan). Biometricians asserted that the really important variation in evolution didn’t follow Mendelian rules. Height, weight, skin color, and similar traits seemed to

9,847 citations

Journal ArticleDOI
10 Mar 1970

8,159 citations

Journal ArticleDOI
TL;DR: A number of various environment-responsive chemosensors related to fluorescent recognition of viscosity, polarity, temperature, hypoxia, and pH that have been reported thus far are reviewed.
Abstract: Environment-related parameters, including viscosity, polarity, temperature, hypoxia, and pH, play pivotal roles in controlling the physical or chemical behaviors of local molecules. In particular, in a biological environment, such factors predominantly determine the biological properties of the local environment or reflect corresponding status alterations. Abnormal changes in these factors would cause cellular malfunction or become a hallmark of the occurrence of severe diseases. Therefore, in recent years, they have increasingly attracted research interest from the fields of chemistry and biological chemistry. With the emergence of fluorescence sensing and imaging technology, several fluorescent chemosensors have been designed to respond to such parameters and to further map their distributions and variations in vitro/in vivo. In this work, we have reviewed a number of various environment-responsive chemosensors related to fluorescent recognition of viscosity, polarity, temperature, hypoxia, and pH that have been reported thus far.

664 citations

Journal ArticleDOI
TL;DR: It is optimistic that the concept of selective targeting remains the hope of the future in developing therapeutics that would selectively target cancer cells and leave healthy cells unharmed in cancer therapy.
Abstract: In the past, metal-based compounds were widely used in the treatment of disease conditions, but the lack of clear distinction between the therapeutic and toxic doses was a major challenge. With the discovery of cisplatin by Barnett Rosenberg in 1960, a milestone in the history of metal-based compounds used in the treatment of cancers was witnessed. This forms the foundation for the modern era of the metal-based anticancer drugs. Platinum drugs, such as cisplatin, carboplatin and oxaliplatin, are the mainstay of the metal-based compounds in the treatment of cancer, but the delay in the therapeutic accomplishment of other metal-based compounds hampered the progress of research in this field. Recently, however, there has been an upsurge of activities relying on the structural information, aimed at improving and developing other forms of metal-based compounds and nonclassical platinum complexes whose mechanism of action is distinct from known drugs such as cisplatin. In line with this, many more metal-based compounds have been synthesized by redesigning the existing chemical structure through ligand substitution or building the entire new compound with enhanced safety and cytotoxic profile. However, because of increased emphasis on the clinical relevance of metal-based complexes, a few of these drugs are currently on clinical trial and many more are awaiting ethical approval to join the trial. In this review, we seek to give an overview of previous reviews on the cytotoxic effect of metal-based complexes while focusing more on newly designed metal-based complexes and their cytotoxic effect on the cancer cell lines, as well as on new approach to metal-based drug design and molecular target in cancer therapy. We are optimistic that the concept of selective targeting remains the hope of the future in developing therapeutics that would selectively target cancer cells and leave healthy cells unharmed.

604 citations