scispace - formally typeset
Search or ask a question
Author

Tarun Agarwal

Bio: Tarun Agarwal is an academic researcher from Indian Institute of Technology Kharagpur. The author has contributed to research in topics: Medicine & Tissue engineering. The author has an hindex of 18, co-authored 84 publications receiving 1127 citations. Previous affiliations of Tarun Agarwal include Indian Institutes of Technology & National Institute of Technology, Rourkela.

Papers published on a yearly basis

Papers
More filters
Journal ArticleDOI
TL;DR: Cytotoxicity data, nuclear condensation-fragmentation and apoptosis analysis together confirmed the therapeutic potential of the CA-CMC formulations and they can be used for colon-specific drug delivery.

162 citations

Journal ArticleDOI
TL;DR: The developed bigels by mixing guar gum hydrogel and sorbitan monostearate-sesame oil based organogel for controlled drug delivery applications were biocompatible in nature and may be tried as matrices for topical drug delivery.

107 citations

Journal ArticleDOI
TL;DR: The analysis described here confirms the proangiogenic-osteogenic properties of the cobalt doped hydroxyapatite and indicates its potential application in bone tissue engineering.

103 citations

Journal ArticleDOI
TL;DR: A review of surface decoration of polymers and nanomaterials, with focus on major industrial applications in the medical field, textile industry, water treatment and food packaging, is presented in this article.
Abstract: The inert nature of most commercial polymers and nanomaterials results in limitations of applications in various industrial fields. This can be solved by surface modifications to improve physicochemical and biological properties, such as adhesion, printability, wetting and biocompatibility. Polymer functionalization allows to graft specific moieties and conjugate molecules that improve material performances. In the last decades, several approaches have been designed in the industry and academia to graft functional groups on surfaces. Here, we review surface decoration of polymers and nanomaterials, with focus on major industrial applications in the medical field, textile industry, water treatment and food packaging. We discuss the advantages and challenges of polymer functionalization. More knowledge is needed on the biology behind cell–polymer interactions, nanosafety and manufacturing at the industrial scale.

95 citations

Journal ArticleDOI
TL;DR: The results suggest that gelatin-carboxymethyl chitosan based scaffolds could be a suitable matrix for dermal tissue engineering applications.

93 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: An updated summary of recent advances in the field of nanomedicines and nano based drug delivery systems through comprehensive scrutiny of the discovery and application of nanomaterials in improving both the efficacy of novel and old drugs and selective diagnosis through disease marker molecules is presented.
Abstract: Nanomedicine and nano delivery systems are a relatively new but rapidly developing science where materials in the nanoscale range are employed to serve as means of diagnostic tools or to deliver therapeutic agents to specific targeted sites in a controlled manner Nanotechnology offers multiple benefits in treating chronic human diseases by site-specific, and target-oriented delivery of precise medicines Recently, there are a number of outstanding applications of the nanomedicine (chemotherapeutic agents, biological agents, immunotherapeutic agents etc) in the treatment of various diseases The current review, presents an updated summary of recent advances in the field of nanomedicines and nano based drug delivery systems through comprehensive scrutiny of the discovery and application of nanomaterials in improving both the efficacy of novel and old drugs (eg, natural products) and selective diagnosis through disease marker molecules The opportunities and challenges of nanomedicines in drug delivery from synthetic/natural sources to their clinical applications are also discussed In addition, we have included information regarding the trends and perspectives in nanomedicine area

3,112 citations

Journal Article
TL;DR: In this paper, the coding exons of the family of 518 protein kinases were sequenced in 210 cancers of diverse histological types to explore the nature of the information that will be derived from cancer genome sequencing.
Abstract: AACR Centennial Conference: Translational Cancer Medicine-- Nov 4-8, 2007; Singapore PL02-05 All cancers are due to abnormalities in DNA. The availability of the human genome sequence has led to the proposal that resequencing of cancer genomes will reveal the full complement of somatic mutations and hence all the cancer genes. To explore the nature of the information that will be derived from cancer genome sequencing we have sequenced the coding exons of the family of 518 protein kinases, ~1.3Mb DNA per cancer sample, in 210 cancers of diverse histological types. Despite the screen being directed toward the coding regions of a gene family that has previously been strongly implicated in oncogenesis, the results indicate that the majority of somatic mutations detected are “passengers”. There is considerable variation in the number and pattern of these mutations between individual cancers, indicating substantial diversity of processes of molecular evolution between cancers. The imprints of exogenous mutagenic exposures, mutagenic treatment regimes and DNA repair defects can all be seen in the distinctive mutational signatures of individual cancers. This systematic mutation screen and others have previously yielded a number of cancer genes that are frequently mutated in one or more cancer types and which are now anticancer drug targets (for example BRAF , PIK3CA , and EGFR ). However, detailed analyses of the data from our screen additionally suggest that there exist a large number of additional “driver” mutations which are distributed across a substantial number of genes. It therefore appears that cells may be able to utilise mutations in a large repertoire of potential cancer genes to acquire the neoplastic phenotype. However, many of these genes are employed only infrequently. These findings may have implications for future anticancer drug development.

2,737 citations

01 Jan 2013
TL;DR: It is demonstrated that it is possible to develop multifunctional scaffolds by combining enhanced angiogenesis potential, osteostimulation, and antibacterial properties for the treatment of large bone defects.
Abstract: It is of great importance to develop multifunctional bioactive scaffolds, which combine angiogenesis capacity, osteostimulation, and antibacterial properties for regenerating lost bone tissues. In order to achieve this aim, we prepared copper (Cu)-containing mesoporous bioactive glass (Cu-MBG) scaffolds with interconnective large pores (several hundred micrometer) and well-ordered mesopore channels (around 5 nm). Both Cu-MBG scaffolds and their ionic extracts could stimulate hypoxia-inducible factor (HIF)-1a and vascular endothelial growth factor(VEGF) expression in human bone marrow stromal cells(hBMSCs). In addition, both Cu-MBG scaffolds and their ionic extracts significantly promoted the osteogenic differentiation of hBMSCs by improving their bone-related gene expression (alkaline phosphatase (ALP), osteopontin(OPN) and osteocalcin (OCN)). Furthermore, Cu-MBG scaffolds could maintain a sustained release of ibuprofen and significantly inhibited the viability of bacteria. This study indicates that the incorporation of Cu2þ ions into MBG scaffolds significantly enhances hypoxia-like tissue reaction leading to the coupling of angiogenesis and osteogenesis. Cu2þ ions play an important role to offer the multifunctional properties of MBG scaffold system. This study has demonstrated that it is possible to develop multifunctional scaffolds by combining enhanced angiogenesis potential, osteostimulation, and antibacterial properties for the treatment of large bone defects.

545 citations

Journal ArticleDOI
TL;DR: The present article has tried to review the latest research on chitosan based tissue engineering constructs, drug delivery vehicles as well as dental care products to pave a way for future applications in the field of biomedical innovation and regenerative medicine.

488 citations

Journal ArticleDOI
TL;DR: A comprehensive summary of recent trends in development of single- (metal, ceramics and polymers), composite-type and cell-laden scaffolds that in addition to mechanical support, promote simultaneous tissue growth, and deliver different molecules or cells with therapeutic or facilitating regeneration effect is offered.

487 citations