scispace - formally typeset
Search or ask a question
Author

Tatiana Shpeisman

Bio: Tatiana Shpeisman is an academic researcher from Intel. The author has contributed to research in topics: Transactional memory & Compiler. The author has an hindex of 31, co-authored 84 publications receiving 2998 citations. Previous affiliations of Tatiana Shpeisman include University of Maryland, College Park & PARC.


Papers
More filters
Journal ArticleDOI
11 Jun 2006
TL;DR: A high-performance software transactional memory system (STM) integrated into a managed runtime environment is presented and the JIT compiler is the first to optimize the overheads of STM, and novel techniques for enabling JIT optimizations on STM operations are shown.
Abstract: Programmers have traditionally used locks to synchronize concurrent access to shared data. Lock-based synchronization, however, has well-known pitfalls: using locks for fine-grain synchronization and composing code that already uses locks are both difficult and prone to deadlock. Transactional memory provides an alternate concurrency control mechanism that avoids these pitfalls and significantly eases concurrent programming. Transactional memory language constructs have recently been proposed as extensions to existing languages or included in new concurrent language specifications, opening the door for new compiler optimizations that target the overheads of transactional memory.This paper presents compiler and runtime optimizations for transactional memory language constructs. We present a high-performance software transactional memory system (STM) integrated into a managed runtime environment. Our system efficiently implements nested transactions that support both composition of transactions and partial roll back. Our JIT compiler is the first to optimize the overheads of STM, and we show novel techniques for enabling JIT optimizations on STM operations. We measure the performance of our optimizations on a 16-way SMP running multi-threaded transactional workloads. Our results show that these techniques enable transactional memory's performance to compete with that of well-tuned synchronization.

318 citations

Proceedings ArticleDOI
14 Mar 2007
TL;DR: New language constructs to support open nesting in Java are described, and it is demonstrated how these constructs can be mapped efficiently to existing STM data structures, demonstrating how open nesting can enhance application scalability.
Abstract: Transactional memory (TM) promises to simplify concurrent programming while providing scalability competitive to fine-grained locking. Language-based constructs allow programmers to denote atomic regions declaratively and to rely on the underlying system to provide transactional guarantees along with concurrency. In contrast with fine-grained locking, TM allows programmers to write simpler programs that are composable and deadlock-free.TM implementations operate by tracking loads and stores to memory and by detecting concurrent conflicting accesses by different transactions. By automating this process, they greatly reduce the programmer's burden, but they also are forced to be conservative. Incertain cases, conflicting memory accesses may not actually violate the higher-level semantics of a program, and a programmer may wish to allow seemingly conflicting transactions to execute concurrently.Open nested transactions enable expert programmers to differentiate between physical conflicts, at the level of memory, and logical conflicts that actually violate application semantics. A TMsystem with open nesting can permit physical conflicts that are not logical conflicts, and thus increase concurrency among application threads.Here we present an implementation of open nested transactions in a Java-based software transactional memory (STM)system. We describe new language constructs to support open nesting in Java, and we discuss new abstract locking mechanisms that a programmer can use to prevent logical conflicts. We demonstrate how these constructs can be mapped efficiently to existing STM data structures. Finally, we evaluate our system on a set of Java applications and data structures, demonstrating how open nesting can enhance application scalability.

212 citations

Proceedings ArticleDOI
10 Jun 2007
TL;DR: The results on a set of Java programs show that strong atomicity can be implemented efficiently in a high-performance STM system and introduces a dynamic escape analysis that differentiates private and public data at runtime to make barriers cheaper and a static not-accessed-in-transaction analysis that removes many barriers completely.
Abstract: Transactional memory provides a new concurrency control mechanism that avoids many of the pitfalls of lock-based synchronization. High-performance software transactional memory (STM) implementations thus far provide weak atomicity: Accessing shared data both inside and outside a transaction can result in unexpected, implementation-dependent behavior. To guarantee isolation and consistent ordering in such a system, programmers are expected to enclose all shared-memory accesses inside transactions.A system that provides strong atomicity guarantees isolation even in the presence of threads that access shared data outside transactions. A strongly-atomic system also orders transactions with conflicting non-transactional memory operations in a consistent manner.In this paper, we discuss some surprising pitfalls of weak atomicity, and we present an STM system that avoids these problems via strong atomicity. We demonstrate how to implement non-transactional data accesses via efficient read and write barriers, and we present compiler optimizations that further reduce the overheads of these barriers. We introduce a dynamic escape analysis that differentiates private and public data at runtime to make barriers cheaper and a static not-accessed-in-transaction analysis that removes many barriers completely. Our results on a set of Java programs show that strong atomicity can be implemented efficiently in a high-performance STM system.

209 citations

Posted Content
TL;DR: Evaluation of MLIR as a generalized infrastructure that reduces the cost of building compilers-describing diverse use-cases to show research and educational opportunities for future programming languages, compilers, execution environments, and computer architecture.
Abstract: This work presents MLIR, a novel approach to building reusable and extensible compiler infrastructure. MLIR aims to address software fragmentation, improve compilation for heterogeneous hardware, significantly reduce the cost of building domain specific compilers, and aid in connecting existing compilers together. MLIR facilitates the design and implementation of code generators, translators and optimizers at different levels of abstraction and also across application domains, hardware targets and execution environments. The contribution of this work includes (1) discussion of MLIR as a research artifact, built for extension and evolution, and identifying the challenges and opportunities posed by this novel design point in design, semantics, optimization specification, system, and engineering. (2) evaluation of MLIR as a generalized infrastructure that reduces the cost of building compilers-describing diverse use-cases to show research and educational opportunities for future programming languages, compilers, execution environments, and computer architecture. The paper also presents the rationale for MLIR, its original design principles, structures and semantics.

149 citations


Cited by
More filters
Proceedings ArticleDOI
01 Sep 2001
TL;DR: This tutorial shows how to use AOP to implement crosscutting conerns in a concise modular way and includes a description of their underlying model, in terms of which a wide range of AOP languages can be understood.
Abstract: Aspect-oriented programming (AOP) is a technique for improving separation of concerns in software design and implementation. AOP works by providing explicit mechanisms for capturing the structure of crosscutting concerns. This tutorial shows how to use AOP to implement crosscutting conerns in a concise modular way. It works with AspectJ, a seamless aspect-oriented extension to the Java(tm) programming language, and with AspectC, an aspect-oriented extension to C in the style of AspectJ. It also includes a description of their underlying model, in terms of which a wide range of AOP languages can be understood.

3,187 citations

Journal Article
TL;DR: AspectJ as mentioned in this paper is a simple and practical aspect-oriented extension to Java with just a few new constructs, AspectJ provides support for modular implementation of a range of crosscutting concerns.
Abstract: Aspect] is a simple and practical aspect-oriented extension to Java With just a few new constructs, AspectJ provides support for modular implementation of a range of crosscutting concerns. In AspectJ's dynamic join point model, join points are well-defined points in the execution of the program; pointcuts are collections of join points; advice are special method-like constructs that can be attached to pointcuts; and aspects are modular units of crosscutting implementation, comprising pointcuts, advice, and ordinary Java member declarations. AspectJ code is compiled into standard Java bytecode. Simple extensions to existing Java development environments make it possible to browse the crosscutting structure of aspects in the same kind of way as one browses the inheritance structure of classes. Several examples show that AspectJ is powerful, and that programs written using it are easy to understand.

2,947 citations

Book ChapterDOI
18 Jun 2001
TL;DR: AspectJ provides support for modular implementation of a range of crosscutting concerns, and simple extensions to existing Java development environments make it possible to browse the crosscutting structure of aspects in the same kind of way as one browses the inheritance structure of classes.
Abstract: AspectJ? is a simple and practical aspect-oriented extension to Java?. With just a few new constructs, AspectJ provides support for modular implementation of a range of crosscutting concerns. In AspectJ's dynamic join point model, join points are well-defined points in the execution of the program; pointcuts are collections of join points; advice are special method-like constructs that can be attached to pointcuts; and aspects are modular units of crosscutting implementation, comprising pointcuts, advice, and ordinary Java member declarations. AspectJ code is compiled into standard Java bytecode. Simple extensions to existing Java development environments make it possible to browse the crosscutting structure of aspects in the same kind of way as one browses the inheritance structure of classes. Several examples show that AspectJ is powerful, and that programs written using it are easy to understand.

2,810 citations

Proceedings ArticleDOI
30 Sep 2008
TL;DR: This paper introduces the Stanford Transactional Application for Multi-Processing (STAMP), a comprehensive benchmark suite for evaluating TM systems and uses the suite to evaluate six different TM systems, identify their shortcomings, and motivate further research on their performance characteristics.
Abstract: Transactional Memory (TM) is emerging as a promising technology to simplify parallel programming. While several TM systems have been proposed in the research literature, we are still missing the tools and workloads necessary to analyze and compare the proposals. Most TM systems have been evaluated using microbenchmarks, which may not be representative of any real-world behavior, or individual applications, which do not stress a wide range of execution scenarios. We introduce the Stanford Transactional Application for Multi-Processing (STAMP), a comprehensive benchmark suite for evaluating TM systems. STAMP includes eight applications and thirty variants of input parameters and data sets in order to represent several application domains and cover a wide range of transactional execution cases (frequent or rare use of transactions, large or small transactions, high or low contention, etc.). Moreover, STAMP is portable across many types of TM systems, including hardware, software, and hybrid systems. In this paper, we provide descriptions and a detailed characterization of the applications in STAMP. We also use the suite to evaluate six different TM systems, identify their shortcomings, and motivate further research on their performance characteristics.

934 citations

Journal ArticleDOI
01 Aug 2007
TL;DR: A candidate list of desirable qualities for a parallel programming language is offered, and how these qualities are addressed in the design of the Chapel language is described, providing an overview of Chapel's features and how they help address parallel productivity.
Abstract: In this paper we consider productivity challenges for parallel programmers and explore ways that parallel language design might help improve end-user productivity. We offer a candidate list of desirable qualities for a parallel programming language, and describe how these qualities are addressed in the design of the Chapel language. In doing so, we provide an overview of Chapel's features and how they help address parallel productivity. We also survey current techniques for parallel programming and describe ways in which we consider them to fall short of our idealized productive programming model.

905 citations