scispace - formally typeset
Search or ask a question
Author

Tatiana von Landesberger

Bio: Tatiana von Landesberger is an academic researcher from Technische Universität Darmstadt. The author has contributed to research in topics: Visualization & Visual analytics. The author has an hindex of 18, co-authored 71 publications receiving 1202 citations. Previous affiliations of Tatiana von Landesberger include University of Cologne & Fraunhofer Society.


Papers
More filters
Journal ArticleDOI
31 Jan 2016
TL;DR: A graph-based method, called MobilityGraphs, is developed, which reveals movement patterns that were occluded in flow maps, and enables the visual representation of the spatio-temporal variation of movements for long time series of spatial situations originally containing a large number of intersecting flows.
Abstract: Learning more about people mobility is an important task for official decision makers and urban planners. Mobility data sets characterize the variation of the presence of people in different places over time as well as movements (or flows) of people between the places. The analysis of mobility data is challenging due to the need to analyze and compare spatial situations (i.e., presence and flows of people at certain time moments) and to gain an understanding of the spatio-temporal changes (variations of situations over time). Traditional flow visualizations usually fail due to massive clutter. Modern approaches offer limited support for investigating the complex variation of the movements over longer time periods.

185 citations

Journal ArticleDOI
TL;DR: This work proposes a comprehensive visual-interactive monitoring and control framework extending the basic SOM algorithm, demonstrating its potential in combining both unsupervised (machine) and supervised (human expert) processing, in producing appropriate cluster results.
Abstract: Visual-interactive cluster analysis provides valuable tools for effectively analyzing large and complex data sets. Owing to desirable properties and an inherent predisposition for visualization, the Kohonen Feature Map (or Self-Organizing Map or SOM) algorithm is among the most popular and widely used visual clustering techniques. However, the unsupervised nature of the algorithm may be disadvantageous in certain applications. Depending on initialization and data characteristics, cluster maps (cluster layouts) may emerge that do not comply with user preferences, expectations or the application context. Considering SOM-based analysis of trajectory data, we propose a comprehensive visual-interactive monitoring and control framework extending the basic SOM algorithm. The framework implements the general Visual Analytics idea to effectively combine automatic data analysis with human expert supervision. It provides simple, yet effective facilities for visually monitoring and interactively controlling the trajectory clustering process at arbitrary levels of detail. The approach allows the user to leverage existing domain knowledge and user preferences, arriving at improved cluster maps. We apply the framework on several trajectory clustering problems, demonstrating its potential in combining both unsupervised (machine) and supervised (human expert) processing, in producing appropriate cluster results.

126 citations

Proceedings ArticleDOI
15 Dec 2011
TL;DR: A novel visual analytics approach for the comparison of multiple hierarchies focusing on both global and local structures is introduced, and is applied to a phylogenetic data set on bacterial ancestry, demonstrating its application benefit.
Abstract: Traditionally, the visual analysis of hierarchies, respectively, trees, is conducted by focusing on one given hierarchy. However, in many research areas multiple, differing hierarchies need to be analyzed simultaneously in a comparative way - in particular to highlight differences between them, which sometimes can be subtle. A prominent example is the analysis of so-called phylogenetic trees in biology, reflecting hierarchical evolutionary relationships among a set of organisms. Typically, the analysis considers multiple phylogenetic trees, either to account for statistical significance or for differences in derivation of such evolutionary hierarchies; for example, based on different input data, such as the 16S ribosomal RNA and protein sequences of highly conserved enzymes. The simultaneous analysis of a collection of such trees leads to more insight into the evolutionary process. We introduce a novel visual analytics approach for the comparison of multiple hierarchies focusing on both global and local structures. A new tree comparison score has been elaborated for the identification of interesting patterns. We developed a set of linked hierarchy views showing the results of automatic tree comparison on various levels of details. This combined approach offers detailed assessment of local and global tree similarities. The approach was developed in close cooperation with experts from the evolutionary biology domain. We apply it to a phylogenetic data set on bacterial ancestry, demonstrating its application benefit.

89 citations

Journal ArticleDOI
01 Jun 2010
TL;DR: This work addresses the visual assessment of projection precision by an approach integrating an appropriately designed projection precision measure directly into the projection visualization and shows how the interactive precision quality visualization system helps to examine the preservation of original data properties in projected space.
Abstract: The analysis of high-dimensional data is an important, yet inherently difficult problem. Projection techniques such as Principal Component Analysis, Multi-dimensional Scaling and Self-Organizing Map can be used to map high-dimensional data to 2D display space. However, projections typically incur a loss in information. Often, uncertainty exists regarding the precision of the projection as compared with its original data characteristics. While the output quality of these projection techniques can be discussed in terms of aggregate numeric error values, visualization is often helpful for better understanding the projection results. We address the visual assessment of projection precision by an approach integrating an appropriately designed projection precision measure directly into the projection visualization. To this end, a flexible projection precision measure is defined that allows the user to balance the degree of locality at which the measure is evaluated. Several visual mappings are designed for integrating the precision measure into the projection visualization at various levels of abstraction. The techniques are implemented in an interactive system, including methods supporting the user in finding appropriate settings of relevant parameters. We demonstrate the usefulness of the approach for visual analysis of classified and unclassified high-dimensional data sets. We show how our interactive precision quality visualization system helps to examine the preservation of original data properties in projected space.

79 citations

Journal ArticleDOI
TL;DR: A computational approach to detecting and quantifying the relationships of pressure emerging during a game and a novel interactive visual tool “time mask” to support examination of team tactics in different situations are proposed.
Abstract: Modern movement tracking technologies enable acquisition of high quality data about movements of the players and the ball in the course of a football match. However, there is a big difference between the raw data and the insights into team behaviors that analysts would like to gain. To enable such insights, it is necessary first to establish relationships between the concepts characterizing behaviors and what can be extracted from data. This task is challenging since the concepts are not strictly defined. We propose a computational approach to detecting and quantifying the relationships of pressure emerging during a game. Pressure is exerted by defending players upon the ball and the opponents. Pressing behavior of a team consists of multiple instances of pressure exerted by the team members. The extracted pressure relationships can be analyzed in detailed and summarized forms with the use of static and dynamic visualizations and interactive query tools. To support examination of team tactics in different situations, we have designed and implemented a novel interactive visual tool “time mask”. It enables selection of multiple disjoint time intervals in which given conditions are fulfilled. Thus, it is possible to select game situations according to ball possession, ball distance to the goal, time that has passed since the last ball possession change or remaining time before the next change, density of players’ positions, or various other conditions. In response to a query, the analyst receives visual and statistical summaries of the set of selected situations and can thus perform joint analysis of these situations. We give examples of applying the proposed combination of computational, visual, and interactive techniques to real data from games in the German Bundesliga, where the teams actively used pressing in their defense tactics.

71 citations


Cited by
More filters
01 Jan 2002

9,314 citations

01 Jan 2016
TL;DR: The flow the psychology of optimal experience is universally compatible with any devices to read as mentioned in this paper and is available in our digital library an online access to it is set as public so you can get it instantly.
Abstract: Thank you very much for downloading flow the psychology of optimal experience. As you may know, people have search numerous times for their chosen readings like this flow the psychology of optimal experience, but end up in infectious downloads. Rather than reading a good book with a cup of tea in the afternoon, instead they juggled with some harmful bugs inside their desktop computer. flow the psychology of optimal experience is available in our digital library an online access to it is set as public so you can get it instantly. Our digital library saves in multiple countries, allowing you to get the most less latency time to download any of our books like this one. Merely said, the flow the psychology of optimal experience is universally compatible with any devices to read.

1,993 citations

Journal Article
TL;DR: In this article, the authors explore the effect of dimensionality on the nearest neighbor problem and show that under a broad set of conditions (much broader than independent and identically distributed dimensions), as dimensionality increases, the distance to the nearest data point approaches the distance of the farthest data point.
Abstract: We explore the effect of dimensionality on the nearest neighbor problem. We show that under a broad set of conditions (much broader than independent and identically distributed dimensions), as dimensionality increases, the distance to the nearest data point approaches the distance to the farthest data point. To provide a practical perspective, we present empirical results on both real and synthetic data sets that demonstrate that this effect can occur for as few as 10-15 dimensions. These results should not be interpreted to mean that high-dimensional indexing is never meaningful; we illustrate this point by identifying some high-dimensional workloads for which this effect does not occur. However, our results do emphasize that the methodology used almost universally in the database literature to evaluate high-dimensional indexing techniques is flawed, and should be modified. In particular, most such techniques proposed in the literature are not evaluated versus simple linear scan, and are evaluated over workloads for which nearest neighbor is not meaningful. Often, even the reported experiments, when analyzed carefully, show that linear scan would outperform the techniques being proposed on the workloads studied in high (10-15) dimensionality!.

1,992 citations

Journal ArticleDOI
TL;DR: A comprehensive review of the current state-of-the-art in medical image analysis using deep convolutional networks is presented in this paper, where the challenges and potential of these techniques are also highlighted.
Abstract: The science of solving clinical problems by analyzing images generated in clinical practice is known as medical image analysis. The aim is to extract information in an affective and efficient manner for improved clinical diagnosis. The recent advances in the field of biomedical engineering have made medical image analysis one of the top research and development area. One of the reasons for this advancement is the application of machine learning techniques for the analysis of medical images. Deep learning is successfully used as a tool for machine learning, where a neural network is capable of automatically learning features. This is in contrast to those methods where traditionally hand crafted features are used. The selection and calculation of these features is a challenging task. Among deep learning techniques, deep convolutional networks are actively used for the purpose of medical image analysis. This includes application areas such as segmentation, abnormality detection, disease classification, computer aided diagnosis and retrieval. In this study, a comprehensive review of the current state-of-the-art in medical image analysis using deep convolutional networks is presented. The challenges and potential of these techniques are also highlighted.

570 citations

Journal ArticleDOI
TL;DR: This State‐of‐the‐Art Report surveys available techniques for the visual analysis of large graphs and discusses various graph algorithmic aspects useful for the different stages of the visual graph analysis process.
Abstract: The analysis of large graphs plays a prominent role in various fields of research and is relevant in many important application areas. Effective visual analysis of graphs requires appropriate visual presentations in combination with respective user interaction facilities and algorithmic graph analysis methods. How to design appropriate graph analysis systems depends on many factors, including the type of graph describing the data, the analytical task at hand and the applicability of graph analysis methods. The most recent surveys of graph visualization and navigation techniques cover techniques that had been introduced until 2000 or concentrate only on graph layouts published until 2002. Recently, new techniques have been developed covering a broader range of graph types, such as timevarying graphs. Also, in accordance with ever growing amounts of graph-structured data becoming available, the inclusion of algorithmic graph analysis and interaction techniques becomes increasingly important. In this State-of-the-Art Report, we survey available techniques for the visual analysis of large graphs. Our review first considers graph visualization techniques according to the type of graphs supported. The visualization techniques form the basis for the presentation of interaction approaches suitable for visual graph exploration. As an important component of visual graph analysis, we discuss various graph algorithmic aspects useful for the different stages of the visual graph analysis process. We also present main open research challenges in this field.

518 citations