scispace - formally typeset
Search or ask a question
Author

Tatjana Paunesku

Bio: Tatjana Paunesku is an academic researcher from Northwestern University. The author has contributed to research in topics: Medicine & Gene. The author has an hindex of 21, co-authored 46 publications receiving 2496 citations. Previous affiliations of Tatjana Paunesku include Argonne National Laboratory & Loyola University Medical Center.


Papers
More filters
Journal ArticleDOI
11 Jun 1993-Science
TL;DR: The concept of sequencing by hybridization (SBH) makes use of an array of all possible n-nucleotide oligomers (n-mers) to identify n-mers present in an unknown DNA sequence and may accelerate the mapping and sequencing phases of the human genome project.
Abstract: The concept of sequencing by hybridization (SBH) makes use of an array of all possible n-nucleotide oligomers (n-mers) to identify n-mers present in an unknown DNA sequence. Computational approaches can then be used to assemble the complete sequence. As a validation of this concept, the sequences of three DNA fragments, 343 base pairs in length, were determined with octamer oligonucleotides. Possible applications of SBH include physical mapping (ordering) of overlapping DNA clones, sequence checking, DNA fingerprinting comparisons of normal and disease-causing genes, and the identification of DNA fragments with particular sequence motifs in complementary DNA and genomic libraries. The SBH techniques may accelerate the mapping and sequencing phases of the human genome project.

366 citations

Journal ArticleDOI
TL;DR: The evolution from prokaryotes to eukaryotes involved a change of function of PCNA from a 'simple' sliding clamp protein of the DNA polymerase complex to an executive molecule controlling critical cellular decision pathways.
Abstract: Proliferating cell nuclear antigen (PCNA) protein is one of the central molecules responsible for decisions of life and death of the cell. The PCNA gene is induced by p53, while PCNA protein interacts with p53-controlled proteins Gadd45, MyD118, CR6 and, most importantly, p21, in the process of deciding cell fate. If PCNA protein is present in abundance in the cell in the absence of p53, DNA replication occurs. On the other hand, if PCNA protein levels are high in the cell in the presence of p53, DNA repair takes place. If PCNA is rendered non-functional or is absent or present in low quantities in the cell, apoptosis occurs. The evolution from prokaryotes to eukaryotes involved a change of function of PCNA from a 'simple' sliding clamp protein of the DNA polymerase complex to an executive molecule controlling critical cellular decision pathways. The evolution of multicellular organisms led to the development of multicellular processes such as differentiation, senescence and apoptosis. PCNA, already an essential molecule in the life of single cellular organisms, then became a protein critical for the survival of multicellular organisms.

340 citations

Journal ArticleDOI
TL;DR: The behaviour of 45-Å nanoparticles of titanium dioxide semiconductor combined with oligonucleotide DNA into nanocomposites in vivo and in vitro are described, which possess the chemically and biologically unique new property of a light-inducible nucleic acid endonuclease, which could become a new tool for gene therapy.
Abstract: Emerging areas of nanotechnology hold the promise of overcoming the limitations of existing technologies for intracellular manipulation. These new developments provide approaches for the creation of chemical–biological hybrid nanocomposites that can be introduced into cells and subsequently used to initiate intracellular processes or biochemical reactions. Such nanocomposites would advance medical biotechnology, just as they are improving microarray technology and imaging in biology and medicine, and introducing new possibilities in chemistry and material sciences. Here we describe the behaviour of 45-A nanoparticles of titanium dioxide semiconductor combined with oligonucleotide DNA into nanocomposites in vivo and in vitro. These nanocomposites not only retain the intrinsic photocatalytic capacity of TiO2 and the bioactivity of the oligonucleotide DNA (covalently attached to the TiO2 nanoparticle), but also possess the chemically and biologically unique new property of a light-inducible nucleic acid endonuclease, which could become a new tool for gene therapy.

278 citations

Journal ArticleDOI
TL;DR: Characteristic X‐ray fluorescence is a technique that can be used to establish elemental concentrations for a large number of different chemical elements simultaneously in different locations in cell and tissue samples to gain insight into cellular processes.
Abstract: Characteristic X-ray fluorescence is a technique that can be used to establish elemental concentrations for a large number of different chemical elements simultaneously in different locations in cell and tissue samples. Exposing the samples to an X-ray beam is the basis of X-ray fluorescence microscopy (XFM). This technique provides the excellent trace element sensitivity; and, due to the large penetration depth of hard X-rays, an opportunity to image whole cells and quantify elements on a per cell basis. Moreover, because specimens prepared for XFM do not require sectioning, they can be investigated close to their natural, hydrated state with cryogenic approaches. Until several years ago, XFM was not widely available to bio-medical communities, and rarely offered resolution better then several microns. This has changed drastically with the development of third-generation synchrotrons. Recent examples of elemental imaging of cells and tissues show the maturation of XFM imaging technique into an elegant and informative way to gain insight into cellular processes. Future developments of XFM-building of new XFM facilities with higher resolution, higher sensitivity or higher throughput will further advance studies of native elemental makeup of cells and provide the biological community including the budding area of bionanotechnology with a tool perfectly suited to monitor the distribution of metals including nanovectors and measure the results of interactions between the nanovectors and living cells and tissues.

218 citations

Journal ArticleDOI
TL;DR: The technological components of large-scale DNA sequencing using the sequencing by hybridization method are in place and the hybridization pattern obtained enabled us to resequence the 100 base pairs by applying an algorithm that tolerates an error rate much higher than was observed in the experiment.
Abstract: Determination of the sequences of human and other complex genomes requires much faster and less expensive sequencing processes than the methods in use today. Sequencing by hybridization is potentially such a process. In this paper we present hybridization data sufficient to accurately read a known sequence of 100 base pairs. In independent reactions, octamer and nonamer oligonucleotides derived from the sequence hybridized more strongly to this DNA than to controls. The 93 consecutive overlapping probes were derived from a 100-base-pair segment of test DNA and additional probes were generated by incorporation of a noncomplementary base at one of the ends of 12 of the basic probes. These 12 additional probes also had a full-match target in one of the control DNAs. The test and one of five control DNAs spotted on nylon filters were hybridized with 83 octamers and 22 nonamers under low-temperature conditions. A stronger signal in DNA containing a full-match target compared to DNA with only mismatched targets was obtained with all 105 probes. In 3 cases (2.9%), the difference of signals was not significant (less than 2-fold) due to inefficient hybridization and the consequently higher influence of background. The hybridization pattern obtained enabled us to resequence the 100 base pairs by applying an algorithm that tolerates an error rate much higher than was observed in the experiment. With this result, the technological components of large-scale DNA sequencing using the sequencing by hybridization method are in place.

184 citations


Cited by
More filters
Journal ArticleDOI
19 Oct 2007-Science
TL;DR: Inspired by the composition of adhesive proteins in mussels, dopamine self-polymerization is used to form thin, surface-adherent polydopamine films onto a wide range of inorganic and organic materials, including noble metals, oxides, polymers, semiconductors, and ceramics.
Abstract: We report a method to form multifunctional polymer coatings through simple dip-coating of objects in an aqueous solution of dopamine. Inspired by the composition of adhesive proteins in mussels, we used dopamine self-polymerization to form thin, surface-adherent polydopamine films onto a wide range of inorganic and organic materials, including noble metals, oxides, polymers, semiconductors, and ceramics. Secondary reactions can be used to create a variety of ad-layers, including self-assembled monolayers through deposition of long-chain molecular building blocks, metal films by electroless metallization, and bioinert and bioactive surfaces via grafting of macromolecules.

8,669 citations

PatentDOI
TL;DR: In this article, the authors proposed a method for monitoring the expression levels of a multiplicity of genes by hybridizing a nucleic acid sample to a high density array of oligonucleotide probes and quantifying the hybridized nucleic acids in the array.
Abstract: This invention provides methods of monitoring the expression levels of a multiplicity of genes. The methods involve hybridizing a nucleic acid sample to a high density array of oligonucleotide probes where the high density array contains oligonucleotide probes complementary to subsequences of target nucleic acids in the nucleic acid sample. In one embodiment, the method involves providing a pool of target nucleic acids comprising RNA transcripts of one or more target genes, or nucleic acids derived from the RNA transcripts, hybridizing said pool of nucleic acids to an array of oligonucleotide probes immobilized on surface, where the array comprising more than 100 different oligonucleotides and each different oligonucleotide is localized in a predetermined region of the surface, the density of the different oligonucleotides is greater than about 60 different oligonucleotides per 1 cm2, and the oligonucleotide probes are complementary to the RNA transcripts or nucleic acids derived from the RNA transcripts; and quantifying the hybridized nucleic acids in the array.

4,382 citations

01 Jan 2000
TL;DR: This annex is aimed at providing a sound basis for conclusions regarding the number of significant radiation accidents that have occurred, the corresponding levels of radiation exposures and numbers of deaths and injuries, and the general trends for various practices, in the context of the Committee's overall evaluations of the levels and effects of exposure to ionizing radiation.
Abstract: NOTE The report of the Committee without its annexes appears as Official Records of the General Assembly, Sixty-third Session, Supplement No. 46. The designations employed and the presentation of material in this publication do not imply the expression of any opinion whatsoever on the part of the Secretariat of the United Nations concerning the legal status of any country, territory, city or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries. The country names used in this document are, in most cases, those that were in use at the time the data were collected or the text prepared. In other cases, however, the names have been updated, where this was possible and appropriate, to reflect political changes. Scientific Annexes Annex A. Medical radiation exposures Annex B. Exposures of the public and workers from various sources of radiation INTROdUCTION 1. In the course of the research and development for and the application of atomic energy and nuclear technologies, a number of radiation accidents have occurred. Some of these accidents have resulted in significant health effects and occasionally in fatal outcomes. The application of technologies that make use of radiation is increasingly widespread around the world. Millions of people have occupations related to the use of radiation, and hundreds of millions of individuals benefit from these uses. Facilities using intense radiation sources for energy production and for purposes such as radiotherapy, sterilization of products, preservation of foodstuffs and gamma radiography require special care in the design and operation of equipment to avoid radiation injury to workers or to the public. Experience has shown that such technology is generally used safely, but on occasion controls have been circumvented and serious radiation accidents have ensued. 2. Reviews of radiation exposures from accidents have been presented in previous UNSCEAR reports. The last report containing an exclusive chapter on exposures from accidents was the UNSCEAR 1993 Report [U6]. 3. This annex is aimed at providing a sound basis for conclusions regarding the number of significant radiation accidents that have occurred, the corresponding levels of radiation exposures and numbers of deaths and injuries, and the general trends for various practices. Its conclusions are to be seen in the context of the Committee's overall evaluations of the levels and effects of exposure to ionizing radiation. 4. The Committee's evaluations of public, occupational and medical diagnostic exposures are mostly concerned with chronic exposures of …

3,924 citations

Journal ArticleDOI
21 Mar 2008-Science
TL;DR: The evidence suggests a pathophysiological link between TDP-43 and ALS, and neighboring mutations in a highly conserved region of TARDBP in sporadic and familial ALS cases.
Abstract: Amyotrophic lateral sclerosis (ALS) is a fatal motor neuron disorder characterized pathologically by ubiquitinated TAR DNA binding protein (TDP-43) inclusions. The function of TDP-43 in the nervous system is uncertain, and a mechanistic role in neurodegeneration remains speculative. We identified neighboring mutations in a highly conserved region of TARDBP in sporadic and familial ALS cases. TARDBPM337V segregated with disease within one kindred and a genome-wide scan confirmed that linkage was restricted to chromosome 1p36, which contains the TARDBP locus. Mutant forms of TDP-43 fragmented in vitro more readily than wild type and, in vivo, caused neural apoptosis and developmental delay in the chick embryo. Our evidence suggests a pathophysiological link between TDP-43 and ALS.

2,425 citations

Journal ArticleDOI
TL;DR: A single-molecule study of the substrate and oxidation-dependent adhesive properties of dopa is reported, in which dopa exploits a remarkable combination of high strength and chemical multifunctionality to accomplish adhesion to substrates of widely varying composition.
Abstract: The glue proteins secreted by marine mussels bind strongly to virtually all inorganic and organic surfaces in aqueous environments in which most adhesives function poorly. Studies of these functionally unique proteins have revealed the presence of the unusual amino acid 3,4-dihydroxy-L-phenylalanine (dopa), which is formed by posttranslational modification of tyrosine. However, the detailed binding mechanisms of dopa remain unknown, and the chemical basis for mussels' ability to adhere to both inorganic and organic surfaces has never been fully explained. Herein, we report a single-molecule study of the substrate and oxidation-dependent adhesive properties of dopa. Atomic force microscopy (AFM) measurements of a single dopa residue contacting a wet metal oxide surface reveal a surprisingly high strength yet fully reversible, noncovalent interaction. The magnitude of the bond dissociation energy as well as the inability to observe this interaction with tyrosine suggests that dopa is critical to adhesion and that the binding mechanism is not hydrogen bond formation. Oxidation of dopa, as occurs during curing of the secreted mussel glue, dramatically reduces the strength of the interaction to metal oxide but results in high strength irreversible covalent bond formation to an organic surface. A new picture of the interfacial adhesive role of dopa emerges from these studies, in which dopa exploits a remarkable combination of high strength and chemical multifunctionality to accomplish adhesion to substrates of widely varying composition from organic to metallic.

1,859 citations