scispace - formally typeset
Search or ask a question
Author

Tatyana A. Gloriozova

Other affiliations: Russian Academy of Sciences
Bio: Tatyana A. Gloriozova is an academic researcher from Russian Academy. The author has contributed to research in topics: Antiprotozoal & Marine invertebrates. The author has an hindex of 15, co-authored 53 publications receiving 1340 citations. Previous affiliations of Tatyana A. Gloriozova include Russian Academy of Sciences.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors present a web resource for the prediction of the biological activity spectra of organic compounds based on their structural formulas for more than 4000 types of biological activity with average accuracy above 95% (http://www.way2drug.com/passonline ).
Abstract: The freely accessible web resource PASS Online is presented. This resource is designed for the prediction of the biological activity spectra of organic compounds based on their structural formulas for more than 4000 types of biological activity with average accuracy above 95% ( http://www.way2drug.com/passonline ). The prediction is based on an analysis of the structure-activity relationships in the training set containing information on the structure and biological activity of more than 300000 organic compounds. The possibilities and limitations of this approach are described. Recommendations are given for interpreting the prediction results. Examples are given for the practical use of the PASS Online web resource in order to establish priorities for chemical synthesis and biological testing of substances on the basis of prediction results. The further trends are considered for the using PASS Online as an Internet platform for joint projects of academic researchers for the search and development of new pharmaceutical agents.

518 citations

Journal ArticleDOI
TL;DR: The role of marine sponge alkaloids as an important source of leads for drug discovery is emphasized, with the emphasis on compounds poised as potential anticancer drugs: pyrroles, pyrazines, imidazole, and other structural families.
Abstract: Present review describes research on novel natural antitumor agents isolated from marine sponges. More than 90 novel cytotoxic antitumor compounds and their synthetic analogs have shown confirmed activity in vitro tumor cell lines bioassay and are of current interest to NCI for further in vivo evaluation. A great problem, to use directly the reservoir of marine organisms for therapy is the very low availability and the isolation of only very small amounts of the biologically active substances from the natural materials. Thus, the synthetic chemistry is required to develop high yield synthetic methods, which are able to produce sufficient marine alkaloids for a broad biological screening. This review will present some of the aspects of the medicinal chemistry developed recently to introduce such modifications. The structures, origins, synthesis and biological activity of a selection of N-heterocyclic marine sponge alkaloids are reviewed. The emphasis is on compounds poised as potential anticancer drugs: pyrroles, pyrazines, imidazole, and other structural families. With computer program PASS some additional biological activities are also predicted, which point toward new possible applications of these compounds. This review emphasizes the role of marine sponge alkaloids as an important source of leads for drug discovery.

112 citations

Journal ArticleDOI
TL;DR: Because of the extensible nature of the standardised Framework design, barriers of interoperability between applications and content are removed, as the user may combine data, models and validation from multiple sources in a dependable and time-effective way.
Abstract: OpenTox provides an interoperable, standards-based Framework for the support of predictive toxicology data management, algorithms, modelling, validation and reporting. It is relevant to satisfying the chemical safety assessment requirements of the REACH legislation as it supports access to experimental data, (Quantitative) Structure-Activity Relationship models, and toxicological information through an integrating platform that adheres to regulatory requirements and OECD validation principles. Initial research defined the essential components of the Framework including the approach to data access, schema and management, use of controlled vocabularies and ontologies, architecture, web service and communications protocols, and selection and integration of algorithms for predictive modelling. OpenTox provides end-user oriented tools to non-computational specialists, risk assessors, and toxicological experts in addition to Application Programming Interfaces (APIs) for developers of new applications. OpenTox actively supports public standards for data representation, interfaces, vocabularies and ontologies, Open Source approaches to core platform components, and community-based collaboration approaches, so as to progress system interoperability goals. The OpenTox Framework includes APIs and services for compounds, datasets, features, algorithms, models, ontologies, tasks, validation, and reporting which may be combined into multiple applications satisfying a variety of different user needs. OpenTox applications are based on a set of distributed, interoperable OpenTox API-compliant REST web services. The OpenTox approach to ontology allows for efficient mapping of complementary data coming from different datasets into a unifying structure having a shared terminology and representation. Two initial OpenTox applications are presented as an illustration of the potential impact of OpenTox for high-quality and consistent structure-activity relationship modelling of REACH-relevant endpoints: ToxPredict which predicts and reports on toxicities for endpoints for an input chemical structure, and ToxCreate which builds and validates a predictive toxicity model based on an input toxicology dataset. Because of the extensible nature of the standardised Framework design, barriers of interoperability between applications and content are removed, as the user may combine data, models and validation from multiple sources in a dependable and time-effective way.

108 citations

Journal ArticleDOI
TL;DR: The role of terrestrial and marine peroxides as an important source of leads for drug discovery is emphasized, with computer program PASS some additional biological activities are predicted, which point toward new possible applications of these compounds.
Abstract: Present review describes research on novel natural anticancer agents isolated from terrestrial and marine sources. More than 120 cytotoxic anticancer compounds have shown confirmed activity in vitro tumor cell lines bioassay and are of current interest to Natural Cancer Institute for further in vivo evaluation. Intensive searches for new classes of pharmacologically potent agents produced by terrestrial and marine organisms have resulted in the discovery of dozens of compounds possessing high cytotoxic activities. However, only a limited number of them have been tested in pre-clinical and clinical trials. One of the reasons is a limited supply of the active ingredients from the natural sources. However, the pre-clinical and clinical development of many terrestrial and/or marine-derived natural products into pharmaceuticals is often hampered by a limited supply from the natural source. Total synthesis is of vital importance in these situations, allowing for the production of useful quantities of the target compound for further biological evaluation. With computer program PASS some additional biological activities are also predicted, which point toward new possible applications of these compounds. This review emphasizes the role of terrestrial and marine peroxides as an important source of leads for drug discovery.

106 citations

Journal ArticleDOI
25 Jan 2018-PLOS ONE
TL;DR: The previously developed PASS (Prediction of Activity Spectra for Substances) algorithm was used to create and validate the classification SAR models for predicting the cytotoxicity of chemicals against different types of human cell lines using ChEMBL experimental data.
Abstract: In silico methods of phenotypic screening are necessary to reduce the time and cost of the experimental in vivo screening of anticancer agents through dozens of millions of natural and synthetic chemical compounds. We used the previously developed PASS (Prediction of Activity Spectra for Substances) algorithm to create and validate the classification SAR models for predicting the cytotoxicity of chemicals against different types of human cell lines using ChEMBL experimental data. A training set from 59,882 structures of compounds was created based on the experimental data (IG50, IC50, and % inhibition values) from ChEMBL. The average accuracy of prediction (AUC) calculated by leave-one-out and a 20-fold cross-validation procedure during the training was 0.930 and 0.927 for 278 cancer cell lines, respectively, and 0.948 and 0.947 for cytotoxicity prediction for 27 normal cell lines, respectively. Using the given SAR models, we developed a freely available web-service for cell-line cytotoxicity profile prediction (CLC-Pred: Cell-Line Cytotoxicity Predictor) based on the following structural formula: http://way2drug.com/Cell-line/.

105 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This review covers the literature published in 2014 for marine natural products, with 1116 citations referring to compounds isolated from marine microorganisms and phytoplankton, green, brown and red algae, sponges, cnidarians, bryozoans, molluscs, tunicates, echinoderms, mangroves and other intertidal plants and microorganisms.

4,649 citations

01 Jan 2007
TL;DR: The Third edition of the Kirk-Othmer encyclopedia of chemical technology as mentioned in this paper was published in 1989, with the title "Kirk's Encyclopedia of Chemical Technology: Chemical Technology".
Abstract: 介绍了Kirk—Othmer Encyclopedia of Chemical Technology(化工技术百科全书)(第五版)电子图书网络版数据库,并对该数据库使用方法和检索途径作出了说明,且结合实例简单地介绍了该数据库的检索方法。

2,666 citations

Journal Article
TL;DR: Why interactome networks are important to consider in biology, how they can be mapped and integrated with each other, what global properties are starting to emerge from interactome network models, and how these properties may relate to human disease are detailed.
Abstract: Complex biological systems and cellular networks may underlie most genotype to phenotype relationships. Here, we review basic concepts in network biology, discussing different types of interactome networks and the insights that can come from analyzing them. We elaborate on why interactome networks are important to consider in biology, how they can be mapped and integrated with each other, what global properties are starting to emerge from interactome network models, and how these properties may relate to human disease.

1,323 citations

Journal ArticleDOI
TL;DR: An update to the taverna tool suite is provided, highlighting new features and developments in the workbench and the Taverna Server.
Abstract: The Taverna workflow tool suite (http://www.taverna.org.uk) is designed to combine distributed Web Services and/or local tools into complex analysis pipelines. These pipelines can be executed on local desktop machines or through larger infrastructure (such as supercomputers, Grids or cloud environments), using the Taverna Server. In bioinformatics, Taverna workflows are typically used in the areas of high-throughput omics analyses (for example, proteomics or transcriptomics), or for evidence gathering methods involving text mining or data mining. Through Taverna, scientists have access to several thousand different tools and resources that are freely available from a large range of life science institutions. Once constructed, the workflows are reusable, executable bioinformatics protocols that can be shared, reused and repurposed. A repository of public workflows is available at http://www.myexperiment.org. This article provides an update to the Taverna tool suite, highlighting new features and developments in the workbench and the Taverna Server.

724 citations