scispace - formally typeset
Search or ask a question
Author

Terence W. Picton

Bio: Terence W. Picton is an academic researcher from University of Toronto. The author has contributed to research in topics: Evoked potential & Stimulus (physiology). The author has an hindex of 86, co-authored 183 publications receiving 30378 citations. Previous affiliations of Terence W. Picton include University of Ottawa & University of California, San Diego.


Papers
More filters
Journal ArticleDOI
TL;DR: It is concluded that at least six different cerebral processes can contribute to the Nl wave of the human auditory evoked potential, and that they often last much longer than the true N1 components that they overlap.
Abstract: This paper reviews the literature on the Nl wave of the human auditory evoked potential. It concludes that at least six different cerebral processes can contribute to (he negative wave recorded from the scalp with a peak latency between 50 and 150 ms: a component generated in the auditory-cortex on the supratemporal plane, a component generated in the association cortex on the lateral aspect of the temporal and parietal cortex, a component generated in the motor and premotor cortices, the mismatch negativity, a temporal component of the processing negativity, and a frontal component of the processing negativity, The first three, which can be considered ‘true’ N1 components, are controlled by the physical and temporal aspects of the stimulus and by the general state of the subject. The other three components are not necessarily elicited by a stimulus but depend on the conditions in which the stimulus occurs. They often last much longer than the true N1 components that they overlap.

3,137 citations

Journal ArticleDOI
TL;DR: New guidelines for recording ERPs are presented and criteria for publishing the results are presented, which allow different studies to be compared readily.
Abstract: Event-related potentials ~ERPs! recorded from the human scalp can provide important information about how the human brain normally processes information and about how this processing may go awry in neurological or psychiatric disorders. Scientists using or studying ERPs must strive to overcome the many technical problems that can occur in the recording and analysis of these potentials. The methods and the results of these ERP studies must be published in a way that allows other scientists to understand exactly what was done so that they can, if necessary, replicate the experiments. The data must then be analyzed and presented in a way that allows different studies to be compared readily. This paper presents guidelines for recording ERPs and criteria for publishing the results.

2,033 citations

Journal ArticleDOI
12 Oct 1973-Science
TL;DR: Auditory evoked potentials were recorded from the vertex of subjects who listened selectively to a series of tone pipping in one ear and ignored concurrent tone pips in the other ear to study the response set established to recognize infrequent, higher pitched tone pipped in the attended series.
Abstract: Auditory evoked potentials were recorded from the vertex of subjects who listened selectively to a series of tone pips in one ear and ignored concurrent tone pips in the other ear. The negative component of the evoked potential peaking at 80 to 110 milliseconds was substantially larger for the attended tones. This negative component indexed a stimulus set mode of selective attention toward the tone pips in one ear. A late positive component peaking at 250 to 400 milliseconds reflected the response set established to recognize infrequent, higher pitched tone pips in the attended series.

1,839 citations

Journal ArticleDOI
TL;DR: The P300 wave is a positive deflection in the human event-related potential that may represent the transfer of information to consciousness, a process that involves many different regions of the brain.
Abstract: SummaryThe P300 wave is a positive deflection in the human event-related potential. It is most commonly elicited in an “oddball” paradigm when a subject detects an occasional “target” stimulus in a regular train of standard stimuli. The P300 wave only occurs if the subject is actively engaged in the

1,768 citations

Journal ArticleDOI
TL;DR: Fifteen distinct components can be identified in the scalp recorded average evoked potential to an abrupt auditory stimulus, and seem to represent widespread activation of frontal cortex.

1,316 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The results suggest that it is important to recognize both the unity and diversity ofExecutive functions and that latent variable analysis is a useful approach to studying the organization and roles of executive functions.

12,182 citations

Journal ArticleDOI
TL;DR: Illustration de trois fonctions principales qui sont predominantes dans l'etude de l'intervention de l'sattention dans les processus cognitifs: 1) orientation vers des evenements sensoriels; 2) detection des signaux par processus focal; 3) maintenir la vigilance en etat d'alerte
Abstract: : The concept of attention as central to human performance extends back to the start of experimental psychology, yet even a few years ago, it would not have been possible to outline in even a preliminary form a functional anatomy of the human attentional system. New developments in neuroscience have opened the study of higher cognition to physiological analysis, and have revealed a system of anatomical areas that appear to be basic to the selection of information for focal (conscious) processing. The importance of attention is its unique role in connecting the mental level of description of processes used in cognitive science with the anatomical level common in neuroscience. Sperry describes the central role that mental concepts play in understanding brain function. As is the case for sensory and motor systems of the brain, our knowledge of the anatomy of attention is incomplete. Nevertheless, we can now begin to identify some principles of organization that allow attention to function as a unified system for the control of mental processing. Although many of our points are still speculative and controversial, we believe they constitute a basis for more detailed studies of attention from a cognitive-neuroscience viewpoint. Perhaps even more important for furthering future studies, multiple methods of mental chronometry, brain lesions, electrophysiology, and several types of neuro-imaging have converged on common findings.

7,237 citations

Journal ArticleDOI
TL;DR: The empirical and theoretical development of the P300 event-related brain potential is reviewed by considering factors that contribute to its amplitude, latency, and general characteristics.

6,283 citations

Journal ArticleDOI
TL;DR: The mathematical theory of the method is explained in detail, followed by a thorough description of MEG instrumentation, data analysis, and practical construction of multi-SQUID devices.
Abstract: Magnetoencephalography (MEG) is a noninvasive technique for investigating neuronal activity in the living human brain. The time resolution of the method is better than 1 ms and the spatial discrimination is, under favorable circumstances, 2-3 mm for sources in the cerebral cortex. In MEG studies, the weak 10 fT-1 pT magnetic fields produced by electric currents flowing in neurons are measured with multichannel SQUID (superconducting quantum interference device) gradiometers. The sites in the cerebral cortex that are activated by a stimulus can be found from the detected magnetic-field distribution, provided that appropriate assumptions about the source render the solution of the inverse problem unique. Many interesting properties of the working human brain can be studied, including spontaneous activity and signal processing following external stimuli. For clinical purposes, determination of the locations of epileptic foci is of interest. The authors begin with a general introduction and a short discussion of the neural basis of MEG. The mathematical theory of the method is then explained in detail, followed by a thorough description of MEG instrumentation, data analysis, and practical construction of multi-SQUID devices. Finally, several MEG experiments performed in the authors' laboratory are described, covering studies of evoked responses and of spontaneous activity in both healthy and diseased brains. Many MEG studies by other groups are discussed briefly as well.

4,533 citations