scispace - formally typeset
Search or ask a question
Author

Teresa A. Davis

Bio: Teresa A. Davis is an academic researcher from Baylor College of Medicine. The author has contributed to research in topics: Skeletal muscle & Insulin. The author has an hindex of 51, co-authored 186 publications receiving 8568 citations. Previous affiliations of Teresa A. Davis include Washington University in St. Louis & Institut national de la recherche agronomique.


Papers
More filters
Journal ArticleDOI
TL;DR: The results of both experimental and clinical studies indicate that Arg is a nutritionally essential amino acid (AA) for spermatogenesis, embryonic survival, fetal and neonatal growth, as well as maintenance of vascular tone and hemodynamics and novel and effective therapies for obesity, diabetes, and the metabolic syndrome.
Abstract: l-Arginine (Arg) is synthesised from glutamine, glutamate, and proline via the intestinal-renal axis in humans and most other mammals (including pigs, sheep and rats). Arg degradation occurs via multiple pathways that are initiated by arginase, nitric-oxide synthase, Arg:glycine amidinotransferase, and Arg decarboxylase. These pathways produce nitric oxide, polyamines, proline, glutamate, creatine, and agmatine with each having enormous biological importance. Arg is also required for the detoxification of ammonia, which is an extremely toxic substance for the central nervous system. There is compelling evidence that Arg regulates interorgan metabolism of energy substrates and the function of multiple organs. The results of both experimental and clinical studies indicate that Arg is a nutritionally essential amino acid (AA) for spermatogenesis, embryonic survival, fetal and neonatal growth, as well as maintenance of vascular tone and hemodynamics. Moreover, a growing body of evidence clearly indicates that dietary supplementation or intravenous administration of Arg is beneficial in improving reproductive, cardiovascular, pulmonary, renal, gastrointestinal, liver and immune functions, as well as facilitating wound healing, enhancing insulin sensitivity, and maintaining tissue integrity. Additionally, Arg or l-citrulline may provide novel and effective therapies for obesity, diabetes, and the metabolic syndrome. The effect of Arg in treating many developmental and health problems is unique among AAs, and offers great promise for improved health and wellbeing of humans and animals.

1,020 citations

Journal ArticleDOI
TL;DR: In this article, it was found that low availability of N-acetylglutamate in enterocyte mitochondria is responsible for limited synthesis of citrulline from both glutamine and proline in 7- to 21-day-old suckling piglets.

236 citations

Journal ArticleDOI
TL;DR: The milk amino acid patterns of the human and elephant, both slow-growing species, were dissimilar, and the amino acid pattern of human milk seems unrelated to growth rate.
Abstract: To determine whether the amino acid pattern of human milk is unique, we compared the amino acid pattern of human milk with the amino acid patterns of the milks of great apes (chimpanzee and gorilla), lower primates (baboon and rhesus monkey) and nonprimates (cow, goat, sheep, llama, pig, horse, elephant, cat and rat). Amino acid pattern was defined as the relative proportion of each amino acid (protein-bound plus free) (in mg) to the total amino acids (in g). Total amino acid concentration was lower in primate milk than in nonprimate milk. There were commonalities in the overall amino acid pattern of the milks of all species sampled; the most abundant amino acids were glutamate (plus glutamine, 20%), proline (10%) and leucine (10%). Essential amino acids were 40%, branched-chain amino acids 20%, and sulfur amino acids 4% of the total amino acids. The amino acid pattern of human milk was more similar to those of great apes than to those of lower primates. For example, cystine was higher and methionine was lower in primate milks than in nonprimate milks, and in great ape and human milks than in lower primate milks. Because the milk amino acid patterns of the human and elephant, both slow-growing species, were dissimilar, the amino acid pattern of human milk seems unrelated to growth rate.

230 citations

Journal ArticleDOI
TL;DR: Recent findings suggest that the immature muscle has a heightened capacity to activate signaling cascades that promote translation initiation in response to the postprandial rise in insulin and amino acids thereby enabling their efficient utilization for muscle growth.
Abstract: Purpose of reviewThis review reports recent findings on the multiple factors that regulate skeletal muscle growth in neonates.Recent findingsSkeletal muscle is the fastest growing protein mass in neonates. The high rate of neonatal muscle growth is due to accelerated rates of protein synthesis accom

212 citations

Journal ArticleDOI
TL;DR: The results suggest that, in the neonate, the stimulation ofprotein synthesis by feeding is mediated by either amino acids or insulin in most tissues; however, the feeding-induced stimulation of protein synthesis in skeletal muscle is uniquely regulated by both insulin and amino acids.
Abstract: In neonatal pigs, the feeding-induced stimulation of protein synthesis in skeletal muscle, but not liver, can be reproduced by insulin infusion when essential amino acids and glucose are maintained at fasting levels. In the present study, 7- and 26-day-old pigs were studied during 1) fasting, 2) hyperinsulinemic-euglycemic-euaminoacidemic clamps, 3) euinsulinemic-euglycemic-hyperaminoacidemic clamps, and 4) hyperinsulinemic-euglycemic-hyperaminoacidemic clamps. Amino acids were clamped using a new amino acid mixture enriched in nonessential amino acids. Tissue protein synthesis was measured using a flooding dose of L-[4-(3)H]phenylalanine. In 7-day-old pigs, insulin infusion alone increased protein synthesis in various skeletal muscles (from +35 to +64%), with equivalent contribution of myofibrillar and sarcoplasmic proteins, as well as cardiac muscle (+50%), skin (+34%), and spleen (+26%). Amino acid infusion alone increased protein synthesis in skeletal muscles (from +28 to +50%), also with equivalent contribution of myofibrillar and sarcoplasmic proteins, as well as liver (+27%), pancreas (+28%), and kidney (+10%). An elevation of both insulin and amino acids did not have an additive effect. Similar qualitative results were obtained in 26-day-old pigs, but the magnitude of the stimulation of protein synthesis by insulin and/or amino acids was lower. The results suggest that, in the neonate, the stimulation of protein synthesis by feeding is mediated by either amino acids or insulin in most tissues; however, the feeding-induced stimulation of protein synthesis in skeletal muscle is uniquely regulated by both insulin and amino acids.

191 citations


Cited by
More filters
Journal Article
TL;DR: This book by a teacher of statistics (as well as a consultant for "experimenters") is a comprehensive study of the philosophical background for the statistical design of experiment.
Abstract: THE DESIGN AND ANALYSIS OF EXPERIMENTS. By Oscar Kempthorne. New York, John Wiley and Sons, Inc., 1952. 631 pp. $8.50. This book by a teacher of statistics (as well as a consultant for \"experimenters\") is a comprehensive study of the philosophical background for the statistical design of experiment. It is necessary to have some facility with algebraic notation and manipulation to be able to use the volume intelligently. The problems are presented from the theoretical point of view, without such practical examples as would be helpful for those not acquainted with mathematics. The mathematical justification for the techniques is given. As a somewhat advanced treatment of the design and analysis of experiments, this volume will be interesting and helpful for many who approach statistics theoretically as well as practically. With emphasis on the \"why,\" and with description given broadly, the author relates the subject matter to the general theory of statistics and to the general problem of experimental inference. MARGARET J. ROBERTSON

13,333 citations

Journal ArticleDOI
Guoyao Wu1
TL;DR: Dietary supplementation with one or a mixture of these functional AA, which include arginine, cysteine, glutamine, leucine, proline, and tryptophan, may be beneficial for ameliorating health problems at various stages of the life cycle and optimizing efficiency of metabolic transformations to enhance muscle growth, milk production, egg and meat quality and athletic performance.
Abstract: Recent years have witnessed the discovery that amino acids (AA) are not only cell signaling molecules but are also regulators of gene expression and the protein phosphorylation cascade. Additionally, AA are key precursors for syntheses of hormones and low-molecular weight nitrogenous substances with each having enormous biological importance. Physiological concentrations of AA and their metabolites (e.g., nitric oxide, polyamines, glutathione, taurine, thyroid hormones, and serotonin) are required for the functions. However, elevated levels of AA and their products (e.g., ammonia, homocysteine, and asymmetric dimethylarginine) are pathogenic factors for neurological disorders, oxidative stress, and cardiovascular disease. Thus, an optimal balance among AA in the diet and circulation is crucial for whole body homeostasis. There is growing recognition that besides their role as building blocks of proteins and polypeptides, some AA regulate key metabolic pathways that are necessary for maintenance, growth, reproduction, and immunity. They are called functional AA, which include arginine, cysteine, glutamine, leucine, proline, and tryptophan. Dietary supplementation with one or a mixture of these AA may be beneficial for (1) ameliorating health problems at various stages of the life cycle (e.g., fetal growth restriction, neonatal morbidity and mortality, weaning-associated intestinal dysfunction and wasting syndrome, obesity, diabetes, cardiovascular disease, the metabolic syndrome, and infertility); (2) optimizing efficiency of metabolic transformations to enhance muscle growth, milk production, egg and meat quality and athletic performance, while preventing excess fat deposition and reducing adiposity. Thus, AA have important functions in both nutrition and health.

2,047 citations

Journal Article
01 Jan 2004-Nature
TL;DR: In this article, S6K1-deficient mice are protected against obesity owing to enhanced β-oxidation, but on a high fat diet, levels of glucose and free fatty acids still rise in S6k1-dependent mice, resulting in insulin receptor desensitization.
Abstract: Elucidating the signalling mechanisms by which obesity leads to impaired insulin action is critical in the development of therapeutic strategies for the treatment of diabetes. Recently, mice deficient for S6 Kinase 1 (S6K1), an effector of the mammalian target of rapamycin (mTOR) that acts to integrate nutrient and insulin signals, were shown to be hypoinsulinaemic, glucose intolerant and have reduced β-cell mass. However, S6K1-deficient mice maintain normal glucose levels during fasting, suggesting hypersensitivity to insulin, raising the question of their metabolic fate as a function of age and diet. Here, we report that S6K1-deficient mice are protected against obesity owing to enhanced β-oxidation. However on a high fat diet, levels of glucose and free fatty acids still rise in S6K1-deficient mice, resulting in insulin receptor desensitization. Nevertheless, S6K1-deficient mice remain sensitive to insulin owing to the apparent loss of a negative feedback loop from S6K1 to insulin receptor substrate 1 (IRS1), which blunts S307 and S636/S639 phosphorylation; sites involved in insulin resistance. Moreover, wild-type mice on a high fat diet as well as K/K Ay and ob/ob (also known as Lep/Lep) micetwo genetic models of obesityhave markedly elevated S6K1 activity and, unlike S6K1-deficient mice, increased phosphorylation of IRS1 S307 and S636/S639. Thus under conditions of nutrient satiation S6K1 negatively regulates insulin signalling.

1,408 citations

Journal Article
TL;DR: The National Academy of Sciences founded The National Academies Press (NAP) with the goal of publishing reports of all four national academies as mentioned in this paper, which publishes more than 200 books from the fields of science, engineering and medicine and offers more than 4000 titles in PDF on its website.
Abstract: The National Academy of Sciences founded The National Academies Press (NAP) with the goal of publishing reports of all four national academies. Annually, NAP publishes more than 200 books from the fields of science, engineering and medicine and offers more than 4000 titles in PDF on its website (http://www.nap.edu/) free of charge.

1,241 citations

Journal ArticleDOI
TL;DR: Increasing evidence shows that dietary supplementation of specific amino acids to animals and humans with malnutrition and infectious disease enhances the immune status, thereby reducing morbidity and mortality.
Abstract: A deficiency of dietary protein or amino acids has long been known to impair immune function and increase the susceptibility of animals and humans to infectious disease. However, only in the past 15 years have the underlying cellular and molecular mechanisms begun to unfold. Protein malnutrition reduces concentrations of most amino acids in plasma. Findings from recent studies indicate an important role for amino acids in immune responses by regulating: (1) the activation of T lymphocytes, B lymphocytes, natural killer cells and macrophages; (2) cellular redox state, gene expression and lymphocyte proliferation; and (3) the production of antibodies, cytokines and other cytotoxic substances. Increasing evidence shows that dietary supplementation of specific amino acids to animals and humans with malnutrition and infectious disease enhances the immune status, thereby reducing morbidity and mortality. Arginine, glutamine and cysteine precursors are the best prototypes. Because of a negative impact of imbalance and antagonism among amino acids on nutrient intake and utilisation, care should be exercised in developing effective strategies of enteral or parenteral provision for maximum health benefits. Such measures should be based on knowledge about the biochemistry and physiology of amino acids, their roles in immune responses, nutritional and pathological states of individuals and expected treatment outcomes. New knowledge about the metabolism of amino acids in leucocytes is critical for the development of effective means to prevent and treat immunodeficient diseases. These nutrients hold great promise in improving health and preventing infectious diseases in animals and humans.

1,191 citations