scispace - formally typeset
Search or ask a question
Author

Teresa Klinowska

Other affiliations: University of Manchester
Bio: Teresa Klinowska is an academic researcher from AstraZeneca. The author has contributed to research in topics: Fulvestrant & Estrogen receptor. The author has an hindex of 23, co-authored 61 publications receiving 3733 citations. Previous affiliations of Teresa Klinowska include University of Manchester.


Papers
More filters
Journal ArticleDOI
TL;DR: A novel structurally distinct third-generation EGFR TKI that irreversibly and selectively targets both sensitizing and resistant T790M(+) mutant EGFR while harboring less activity toward wild-type EGFR is reported.
Abstract: First-generation EGFR tyrosine kinase inhibitors (EGFR TKI) provide significant clinical benefit in patients with advanced EGFR-mutant (EGFRm+) non–small cell lung cancer (NSCLC). Patients ultimately develop disease progression, often driven by acquisition of a second T790M EGFR TKI resistance mutation. AZD9291 is a novel oral, potent, and selective third-generation irreversible inhibitor of both EGFRm+ sensitizing and T790M resistance mutants that spares wild-type EGFR. This mono-anilino–pyrimidine compound is structurally distinct from other third-generation EGFR TKIs and offers a pharmacologically differentiated profile from earlier generation EGFR TKIs. Preclinically, the drug potently inhibits signaling pathways and cellular growth in both EGFRm+ and EGFRm+/T790M+ mutant cell lines in vitro, with lower activity against wild-type EGFR lines, translating into profound and sustained tumor regression in EGFR-mutant tumor xenograft and transgenic models. The treatment of 2 patients with advanced EGFRm+ T790M+ NSCLC is described as proof of principle. Significance: We report the development of a novel structurally distinct third-generation EGFR TKI, AZD9291, that irreversibly and selectively targets both sensitizing and resistant T790M+ mutant EGFR while harboring less activity toward wild-type EGFR. AZD9291 is showing promising responses in a phase I trial even at the first-dose level, with first published clinical proof-of-principle validation being presented. Cancer Discov; 4(9); 1046–61. ©2014 AACR. This article is highlighted in the In This Issue feature, p. 973

1,561 citations

Journal ArticleDOI
TL;DR: The findings show that AZD4547 is a novel selective small-molecule inhibitor of FGFR with potent antitumor activity against FGFR-deregulated tumors in preclinical models and is under clinical investigation for the treatment ofFGFR-dependent tumors.
Abstract: The fibroblast growth factor (FGF) signaling axis is increasingly implicated in tumorigenesis and chemoresistance. Several small-molecule FGF receptor (FGFR) kinase inhibitors are currently in clinical development; however, the predominant activity of the most advanced of these agents is against the kinase insert domain receptor (KDR), which compromises the FGFR selectivity. Here, we report the pharmacologic profile of AZD4547, a novel and selective inhibitor of the FGFR1, 2, and 3 tyrosine kinases. AZD4547 inhibited recombinant FGFR kinase activity in vitro and suppressed FGFR signaling and growth in tumor cell lines with deregulated FGFR expression. In a representative FGFR-driven human tumor xenograft model, oral administration of AZD4547 was well tolerated and resulted in potent dose-dependent antitumor activity, consistent with plasma exposure and pharmacodynamic modulation of tumor FGFR. Importantly, at efficacious doses, no evidence of anti-KDR-related effects were observed, confirming the in vivo FGFR selectivity of AZD4547. Taken together, our findings show that AZD4547 is a novel selective small-molecule inhibitor of FGFR with potent antitumor activity against FGFR-deregulated tumors in preclinical models. AZD4547 is under clinical investigation for the treatment of FGFR-dependent tumors.

472 citations

Journal ArticleDOI
TL;DR: Following observations of significant tumor inhibition in preclinical models, the clinical candidate AZD9291 was administered clinically to patients with T790M positive EGFR-TKI resistant NSCLC and early efficacy has been observed, accompanied by an encouraging safety profile.
Abstract: Epidermal growth factor receptor (EGFR) inhibitors have been used clinically in the treatment of non-small-cell lung cancer (NSCLC) patients harboring sensitizing (or activating) mutations for a number of years Despite encouraging clinical efficacy with these agents, in many patients resistance develops leading to disease progression In most cases, this resistance is in the form of the T790M mutation In addition, EGFR wild type receptor inhibition inherent with these agents can lead to dose limiting toxicities of rash and diarrhea We describe herein the evolution of an early, mutant selective lead to the clinical candidate AZD9291, an irreversible inhibitor of both EGFR sensitizing (EGFRm+) and T790M resistance mutations with selectivity over the wild type form of the receptor Following observations of significant tumor inhibition in preclinical models, the clinical candidate was administered clinically to patients with T790M positive EGFR-TKI resistant NSCLC and early efficacy has been observed, acc

457 citations

Journal ArticleDOI
09 Jun 2016-Nature
TL;DR: A new class of mTOR inhibitors is reported which overcomes resistance to existing first and second generation inhibitors and exploits the unique juxtaposition of two drug binding pockets to create a bivalent interaction that allows inhibition of these resistant mutants.
Abstract: Precision medicines exert selective pressure on tumour cells that leads to the preferential growth of resistant subpopulations, necessitating the development of next-generation therapies to treat the evolving cancer. The PIK3CA-AKT-mTOR pathway is one of the most commonly activated pathways in human cancers, which has led to the development of small-molecule inhibitors that target various nodes in the pathway. Among these agents, first-generation mTOR inhibitors (rapalogs) have caused responses in 'N-of-1' cases, and second-generation mTOR kinase inhibitors (TORKi) are currently in clinical trials. Here we sought to delineate the likely resistance mechanisms to existing mTOR inhibitors in human cell lines, as a guide for next-generation therapies. The mechanism of resistance to the TORKi was unusual in that intrinsic kinase activity of mTOR was increased, rather than a direct active-site mutation interfering with drug binding. Indeed, identical drug-resistant mutations have been also identified in drug-naive patients, suggesting that tumours with activating MTOR mutations will be intrinsically resistant to second-generation mTOR inhibitors. We report the development of a new class of mTOR inhibitors that overcomes resistance to existing first- and second-generation inhibitors. The third-generation mTOR inhibitor exploits the unique juxtaposition of two drug-binding pockets to create a bivalent interaction that allows inhibition of these resistant mutants.

312 citations

Journal ArticleDOI
TL;DR: A novel series of small-molecule inhibitors developed to target the double mutant form of the epidermal growth factor receptor (EGFR) tyrosine kinase, which is resistant to treatment with gefitinib and erlotinib, demonstrates high levels of activity and shows selectivity over wild-type EGFR.
Abstract: A novel series of small-molecule inhibitors has been developed to target the double mutant form of the epidermal growth factor receptor (EGFR) tyrosine kinase, which is resistant to treatment with gefitinib and erlotinib. Our reported compounds also show selectivity over wild-type EGFR. Guided by molecular modeling, this series was evolved to target a cysteine residue in the ATP binding site via covalent bond formation and demonstrates high levels of activity in cellular models of the double mutant form of EGFR. In addition, these compounds show significant activity against the activating mutations, which gefitinib and erlotinib target and inhibition of which gives rise to their observed clinical efficacy. A glutathione (GSH)-based assay was used to measure thiol reactivity toward the electrophilic functionality of the inhibitor series, enabling both the identification of a suitable reactivity window for their potency and the development of a reactivity quantitative structure-property relationship (QSPR) to support design.

204 citations


Cited by
More filters
Journal ArticleDOI
09 Mar 2017-Cell
TL;DR: Recent advances in understanding of mTOR function, regulation, and importance in mammalian physiology are reviewed and how the mTOR signaling network contributes to human disease is highlighted.

4,719 citations

Journal ArticleDOI
TL;DR: Introduced to the Market in the Last Decade (2001−2011) Jiang Wang,† María Sańchez-Rosello,́‡,§ Jose ́ Luis Aceña, Carlos del Pozo,‡ and Hong Liu.
Abstract: Introduced to the Market in the Last Decade (2001−2011) Jiang Wang,† María Sańchez-Rosello,́‡,§ Jose ́ Luis Aceña, Carlos del Pozo,‡ Alexander E. Sorochinsky, Santos Fustero,*,‡,§ Vadim A. Soloshonok,* and Hong Liu*,† †Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China ‡Department of Organic Chemistry, Faculty of Pharmacy, University of Valencia, Av. Vicente Andreś Estelleś, 46100 Burjassot, Valencia, Spain Laboratorio de Molećulas Orgańicas, Centro de Investigacioń Príncipe Felipe, C/ Eduardo Primo Yuf́era 3, 46012 Valencia, Spain Department of Organic Chemistry I, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel Lardizab́al 3, 20018 San Sebastian, Spain IKERBASQUE, Basque Foundation for Science, Alameda Urquijo, 36-5 Plaza Bizkaia, 48011 Bilbao, Spain Institute of Bioorganic Chemistry and Petrochemistry, National Academy of Sciences of Ukraine, Murmanska Street 1, 02660 Kyiv-94, Ukraine

3,368 citations

Journal ArticleDOI
TL;DR: Osimertinib showed efficacy superior to that of standard EGFR‐TKIs in the first‐line treatment of EGFR mutation–positive advanced NSCLC, with a similar safety profile and lower rates of serious adverse events.
Abstract: BackgroundOsimertinib is an oral, third-generation, irreversible epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI) that selectively inhibits both EGFR-TKI–sensitizing and EGFR T790M resistance mutations. We compared osimertinib with standard EGFR-TKIs in patients with previously untreated, EGFR mutation–positive advanced non–small-cell lung cancer (NSCLC). MethodsIn this double-blind, phase 3 trial, we randomly assigned 556 patients with previously untreated, EGFR mutation–positive (exon 19 deletion or L858R) advanced NSCLC in a 1:1 ratio to receive either osimertinib (at a dose of 80 mg once daily) or a standard EGFR-TKI (gefitinib at a dose of 250 mg once daily or erlotinib at a dose of 150 mg once daily). The primary end point was investigator-assessed progression-free survival. ResultsThe median progression-free survival was significantly longer with osimertinib than with standard EGFR-TKIs (18.9 months vs. 10.2 months; hazard ratio for disease progression or death, 0.46; 95% confi...

3,074 citations

Journal ArticleDOI
TL;DR: Cancer cells possess a broad spectrum of migration and invasion mechanisms and learning more about the cellular and molecular basis of these different migration/invasion programmes will help to understand how cancer cells disseminate and lead to new treatment strategies.
Abstract: Cancer cells possess a broad spectrum of migration and invasion mechanisms. These include both individual and collective cell-migration strategies. Cancer therapeutics that are designed to target adhesion receptors or proteases have not proven to be effective in slowing tumour progression in clinical trials — this might be due to the fact that cancer cells can modify their migration mechanisms in response to different conditions. Learning more about the cellular and molecular basis of these different migration/invasion programmes will help us to understand how cancer cells disseminate and lead to new treatment strategies.

3,064 citations

20 Sep 2013
TL;DR: Afatinib is associated with prolongation of PFS when compared with standard doublet chemotherapy in patients with advanced lung adenocarcinoma and EGFR mutations.
Abstract: Purpose The LUX-Lung 3 study investigated the efficacy of chemotherapy compared with afatinib, a selective, orally bioavailable ErbB family blocker that irreversibly blocks signaling from epidermal growth factor receptor (EGFR/ErbB1), human epidermal growth factor receptor 2 (HER2/ErbB2), and ErbB4 and has wide-spectrum preclinical activity against EGFR mutations. A phase II study of afatinib in EGFR mutation-positive lung adenocarcinoma demonstrated high response rates and progression-free survival (PFS). Patients and Methods In this phase III study, eligible patients with stage IIIB/IV lung adenocarcinoma were screened for EGFR mutations. Mutation-positive patients were stratified by mutation type (exon 19 deletion, L858R, or other) and race (Asian or non-Asian) before two-to-one random assignment to 40 mg afatinib per day or up to six cycles of cisplatin plus pemetrexed chemotherapy at standard doses every 21 days. The primary end point was PFS by independent review. Secondary end points included tumor response, overall survival, adverse events, and patient-reported outcomes (PROs). Results A total of 1,269 patients were screened, and 345 were randomly assigned to treatment. Median PFS was 11.1 months for afatinib and 6.9 months for chemotherapy (hazard ratio [HR], 0.58; 95% CI, 0.43 to 0.78; P = .001). Median PFS among those with exon 19 deletions and L858R EGFR mutations (n = 308) was 13.6 months for afatinib and 6.9 months for chemotherapy (HR, 0.47; 95% CI, 0.34 to 0.65; P = .001). The most common treatmentrelated adverse events were diarrhea, rash/acne, and stomatitis for afatinib and nausea, fatigue, and decreased appetite for chemotherapy. PROs favored afatinib, with better control of cough, dyspnea, and pain. Conclusion Afatinib is associated with prolongation of PFS when compared with standard doublet chemotherapy in patients with advanced lung adenocarcinoma and EGFR mutations.

2,380 citations