scispace - formally typeset
Search or ask a question
Author

Teri W. Odom

Bio: Teri W. Odom is an academic researcher from Northwestern University. The author has contributed to research in topics: Plasmon & Racism. The author has an hindex of 63, co-authored 287 publications receiving 18664 citations. Previous affiliations of Teri W. Odom include Duke University & Northwest University (United States).


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors discuss the development of a general approach to rational synthesis of crystalline nanowires of arbitrary composition, and illustrate solutions to these challenges with measurements of the atomic structure and electronic properties of carbon nanotubes.
Abstract: Dimensionality plays a critical role in determining the properties of materials due to, for example, the different ways that electrons interact in three-dimensional, twodimensional (2D), and one-dimensional (1D) structures.1-5 The study of dimensionality has a long history in chemistry and physics, although this has been primarily with the prefix “quasi” added to the description of materials; that is, quasi-1D solids, including square-planar platinum chain and metal trichalcogenide compounds,2,6 and quasi2D layered solids, such as metal dichalcogenides and copper oxide superconductors.3-5,7,8 The anisotropy inherent in quasi-1D and -2D systems is central to the unique properties and phases that these materials exhibit, although the small but finite interactions between 1D chains or 2D layers in bulk materials have made it difficult to address the interesting properties expected for the pure low-dimensional systems. Are pure low-dimensional systems interesting and worth pursuing? We believe that the answer to this question is an unqualified yes from the standpoints of both fundamental science and technology. One needs to look no further than past studies of the 2D electron gas in semiconductor heterostructures, which have produced remarkably rich and often unexpected results,9,10 and electron tunneling through 0D quantum dots, which have led to the concepts of the artificial atom and the creation of single electron transistors.11-15 In these cases, lowdimensional systems were realized by creating discrete 2D and 0D nanostructures. 1D nanostructures, such as nanowires and nanotubes, are expected to be at least as interesting and important as 2D and 0D systems.16,17 1D systems are the smallest dimension structures that can be used for efficient transport of electrons and optical excitations, and are thus expected to be critical to the function and integration of nanoscale devices. However, little is known about the nature of, for example, localization that could preclude transport through 1D systems. In addition, 1D systems should exhibit density of states singularities, can have energetically discrete molecularlike states extending over large linear distances, and may show more exotic phenomena, such as the spin-charge separation predicted for a Luttinger liquid.1,2 There are also many applications where 1D nanostructures could be exploited, including nanoelectronics, superstrong and tough composites, functional nanostructured materials, and novel probe microscopy tips.16-29 To address these fascinating fundamental scientific issues and potential applications requires answers to two questions at the heart of condensed matter chemistry and physics research: (1) How can atoms or other building blocks be rationally assembled into structures with nanometer-sized diameters but much longer lengths? (2) What are the intrinsic properties of these quantum wires and how do these properties depend, for example, on diameter and structure? Below we describe investigations from our laboratory directed toward these two general questions. The organization of this Account is as follows. In section II, we discuss the development of a general approach to the rational synthesis of crystalline nanowires of arbitrary composition. In section III, we outline key challenges to probing the intrinsic properties of 1D systems and illustrate solutions to these challenges with measurements of the atomic structure and electronic properties of carbon nanotubes. Last, we discuss future directions and challenges in section IV.

3,218 citations

Journal ArticleDOI
01 Jan 1998-Nature
TL;DR: In this paper, the structure and electronic properties of single-walled carbon nanotubes (SWNTs) were investigated using tunnelling microscopy, and it was shown that the SWNT samples exhibit many different structures, with no one species dominating.
Abstract: Carbon nanotubes1 are predicted to be metallic or semiconducting depending on their diameter and the helicity of the arrangement of graphitic rings in their walls2,3,4,5. Scanning tunnelling microscopy (STM) offers the potential to probe this prediction, as it can resolve simultaneously both atomic structure and the electronic density of states. Previous STM studies of multi-walled nanotubes6,7,8,9 and single-walled nanotubes (SWNTs)10 have provided indications of differing structures and diameter-dependent electronic properties, but have not revealed any explicit relationship between structure and electronic properties. Here we report STM measurements of the atomic structure and electronic properties of SWNTs. We are able to resolve the hexagonal-ring structure of the walls, and show that the electronic properties do indeed depend on diameter and helicity. We find that the SWNT samples exhibit many different structures, with no one species dominating.

2,276 citations

Journal ArticleDOI
16 May 2002-Langmuir
TL;DR: In this article, the preparation of two-layer stamps was adapted from a procedure originally developed by Schmid et al. (Macromolecules 2000, 33, 3042) for microcontact printing.
Abstract: Composite stamps composed of two layersa stiff layer supported by a flexible layerextend the capabilities of soft lithography to the generation of 50−100-nm features. The preparation of these stamps was adapted from a procedure originally developed by Schmid et al. (Macromolecules 2000, 33, 3042) for microcontact printing. This paper demonstrates how pattern transfer using other soft lithographic techniquesmicromolding in capillaries, microtransfer molding, and phase-shifting lithographycan be improved using two-layer stamps relative to stamps made of Sylgard 184 poly(dimethylsiloxane).

734 citations

Journal ArticleDOI
TL;DR: It is found that optically pumped, two-dimensional arrays of plasmonic Au or Ag nanoparticles surrounded by an organic gain medium show directional beam emission, and behave as arrays of nanoscale light sources in the near-field.
Abstract: Two-dimensional arrays of plasmonic nanoparticles coupled with a gain medium can behave as a surface-emitting laser with near-zero group velocity and picosecond dynamics.

687 citations

Journal ArticleDOI
TL;DR: In this article, a more detailed picture of the SWNT electronic band structure is developed and compared with experimental tunneling spectroscopy measurements, and experimental and theoretical investigations of localized structures, such as bends and ends in nanotubes, are presented.
Abstract: Scanning tunneling microscopy, spectroscopy, and tight-binding calculations have been used to elucidate the unique structural and electronic properties of single-walled carbon nanotubes (SWNTs). First, the unique relationship between SWNT atomic structure and electronic properties, and the richness of structures observed in both purified and chemically etched nanotube samples are discussed. Second, a more detailed picture of SWNT electronic band structure is developed and compared with experimental tunneling spectroscopy measurements. Third, experimental and theoretical investigations of localized structures, such as bends and ends in nanotubes, are presented. Last, quantum size effects in nanotubes with lengths approaching large molecules are discussed. The implications of these studies and important future directions are considered.

644 citations


Cited by
More filters
01 May 1993
TL;DR: Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems.
Abstract: Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of inter-atomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dynamics models which can be difficult to parallelize efficiently—those with short-range forces where the neighbors of each atom change rapidly. They can be implemented on any distributed-memory parallel machine which allows for message-passing of data between independently executing processors. The algorithms are tested on a standard Lennard-Jones benchmark problem for system sizes ranging from 500 to 100,000,000 atoms on several parallel supercomputers--the nCUBE 2, Intel iPSC/860 and Paragon, and Cray T3D. Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems. For large problems, the spatial algorithm achieves parallel efficiencies of 90% and a 1840-node Intel Paragon performs up to 165 faster than a single Cray C9O processor. Trade-offs between the three algorithms and guidelines for adapting them to more complex molecular dynamics simulations are also discussed.

29,323 citations

Journal ArticleDOI
TL;DR: In this paper, a new hybrid density functional based on a screened Coulomb potential for the exchange interaction is proposed, which enables fast and accurate hybrid calculations, even of usually difficult metallic systems.
Abstract: Hybrid density functionals are very successful in describing a wide range of molecular properties accurately. In large molecules and solids, however, calculating the exact (Hartree–Fock) exchange is computationally expensive, especially for systems with metallic characteristics. In the present work, we develop a new hybrid density functional based on a screened Coulomb potential for the exchange interaction which circumvents this bottleneck. The results obtained for structural and thermodynamic properties of molecules are comparable in quality to the most widely used hybrid functionals. In addition, we present results of periodic boundary condition calculations for both semiconducting and metallic single wall carbon nanotubes. Using a screened Coulomb potential for Hartree–Fock exchange enables fast and accurate hybrid calculations, even of usually difficult metallic systems. The high accuracy of the new screened Coulomb potential hybrid, combined with its computational advantages, makes it widely applicable to large molecules and periodic systems.

13,446 citations

Journal ArticleDOI
TL;DR: The interest in nanoscale materials stems from the fact that new properties are acquired at this length scale and, equally important, that these properties are equally important.
Abstract: The interest in nanoscale materials stems from the fact that new properties are acquired at this length scale and, equally important, that these properties * To whom correspondence should be addressed. Phone, 404-8940292; fax, 404-894-0294; e-mail, mostafa.el-sayed@ chemistry.gatech.edu. † Case Western Reserve UniversitysMillis 2258. ‡ Phone, 216-368-5918; fax, 216-368-3006; e-mail, burda@case.edu. § Georgia Institute of Technology. 1025 Chem. Rev. 2005, 105, 1025−1102

6,852 citations

Journal ArticleDOI
TL;DR: It is evident from the literature survey articles that ion-exchange, adsorption and membrane filtration are the most frequently studied for the treatment of heavy metal wastewater.

6,844 citations