scispace - formally typeset
Search or ask a question

Showing papers by "Terrence W. Simon published in 1997"


Proceedings ArticleDOI
02 Jun 1997
TL;DR: In this paper, an experimental study of flow separation and transition in either attached boundary layers or separated shear layers over the suction surface of a simulation of a low-pressure turbine airfoil flow is presented.
Abstract: Results of an experimental study of flow separation and transition in either attached boundary layers or separated shear layers over the suction surface of a simulation of a low-pressure turbine airfoil flow are presented. Detailed velocity profiles were measured with the hot-wire technique. Static pressure distributions are also presented. Flow transition is documented using measured intermittency distributions in the boundary layer and the separated shear layer. Cases for Reynolds numbers of 50,000, 100,000, 200,000 and 300,000 are reported. These Reynolds numbers are based on suction surface length and exit velocity. Three Free Stream Turbulence Intensity values, 0.5%, 2.5% and 10%, are represented. Flow separation is observed for all the low-FSTI cases. Of these, the lowest Reynolds number case was not able to complete transition of the shear layer and the separation bubble persisted over the entire blade surface. For the other low-FSTI cases, transition is observed in the shear layer over the separation bubble. This transition proceeded quickly, spreading rapidly toward the wall. Elevated FSTI drives an earlier transition than in the low-FSTI cases and the separation bubbles are smaller. For the highest Reynolds number cases with 2.5% and 10% FSTI, transition is of the attached boundary layer and no separation exists. Flow separation with shear flow transition is observed for the lower-Re cases. Models for intermittency and transition length and location from the modern literature are assessed.

64 citations



Proceedings ArticleDOI
02 Jun 1997
TL;DR: In this article, experimental hot-wire anemometry and thermocouple measurements are taken to document the sensitivity which film cooling performance has to the hole length and the geometry of the plenum which supplies cooling flow to the holes.
Abstract: Experimental hot-wire anemometry and thermocouple measurements are taken to document the sensitivity which film cooling performance has to the hole length and the geometry of the plenum which supplies cooling flow to the holes. This sensitivity is described in terms of the effects these geometric features have on hole-exit velocity and turbulence intensity distributions and on adiabatic effectiveness values on the surface downstream. These measurements were taken under high freestream turbulence intensity (12%) conditions, representative of operating gas turbine engines. Coolant is supplied to the film cooling holes by means of (1) an unrestricted plenum, (2) a plenum which restricts the flow approaching the holes, forcing it to flow co-current with the freestream, and (3) a plenum which forces the flow to approach the holes counter-current with the freestream. Short-hole (L/D = 2.3) and long-hole (L/D = 7.0) comparisons are made. The geometry has a single row of film cooling holes with 35°-inclined streamwise injection. The film cooling flow is supplied at the same temperature as that of the freestream for hole-exit measurements and 10°C above the freestream temperature for adiabatic effectiveness measurements, yielding density ratios in the range 0.96–1.0. Two coolant-to-freestream velocity ratios, 0.5 and 1.0, are investigated. The results document the effects of (1) supply plenum geometry, (2) velocity ratio, and (3) hole L/D.Copyright © 1997 by ASME

37 citations


Proceedings ArticleDOI
02 Jun 1997
TL;DR: In this article, the effects of changes in Reynolds number, and freestream turbulence intensity on the suction surface of a low-pressure turbine blade were evaluated in a two-dimensional linear cascade.
Abstract: Low pressure turbines in aircraft experience large changes in flow Reynolds number as the gas turbine engine operates from takeoff to high altitude cruise. Low pressure turbine blades are also subject to regions of strong acceleration and diffusion. These changes in Reynolds number, strong acceleration, as well as elevated levels of turbulence can result in unsteady separation and transition zones on the surface of the blade.An experimental study was conducted in a two-dimensional linear cascade, focusing on the suction surface of a low pressure turbine blade. The intent was to assess the effects of changes in Reynolds number, and freestream turbulence intensity. Flow Reynolds numbers, based on exit velocity and suction surface length, have been varied from 50,000 to 300,000. The freestream turbulence intensity was varied from 1.1 to 8.1 percent.Separation was observed at all test Reynolds numbers. Increasing the flow Reynolds number, without changing freestream turbulence, resulted in a slightly rearward movement of the onset of separation and shrinkage of the separation zone.Increasing the freestream turbulence intensity, without changing Reynolds number resulted in a shrinkage of the separation region on the suction surface.Increasing both flow Reynolds numbers and freestream turbulence intensity compounded these effects such that at a Reynolds number of 300,000 and a freestream turbulence intensity of 8.1%, the separation zone was almost nonexistent.The influences on the blade’s wake from altering freestream turbulence and Reynolds number are also documented. The width of the wake and velocity defect rise with a decrease in either turbulence level or chord Reynolds number.Numerical simulations were performed in support of experimental results. The numerical results compare well qualitatively with the low freestream turbulence experimental cases.Copyright © 1997 by ASME

35 citations


Journal ArticleDOI
TL;DR: In this article, a high free-stream turbulent boundary layer flow was modeled on the downstream half of the pressure side of a gas turbine airfoil and the transition zone is of extended length in spite of the high free stream turbulence level.
Abstract: Measurements from heated boundary layers along a concave-curved test wall subject to high (initially 8 percent) free-stream turbulence intensity and strong (K = ν/U 2 ∞ dU∞/dx, as high as 9 X 10 -6 ) acceleration are presented and discussed. Conditions for the experiments were chosen to simulate those present on the downstream half of the pressure side of gas turbine airfoil. Turbulence statistics, including the turbulent shear stress, the turbulent heat flux, and the turbulent Prandtl number are presented. The transition zone is of extended length in spite of the high free-stream turbulence level. Turbulence quantities are strongly suppressed below values in unaccelerated turbulent boundary layers. Turbulent transport quantities rise with the intermittency, as the boundary layer proceeds through transition. Octant analysis shows a similar eddy structure in the present flow as was observed in transitional flows under low free-stream turbulence conditions. To the authors' knowledge, this is the first detailed documentation ofa high-free-stream-turbulence boundary layer flow in such a strong acceleration field.

34 citations


Journal ArticleDOI
TL;DR: In this paper, a mixing length model was developed to capture the effects of pressure gradients by including the convective and pressure gradient terms in the momentum and energy equations, which deviate considerably from the standard law of the wall; the temperature profiles more so than the velocity profiles agree well with experimental data.
Abstract: The standard turbulent law of the wall, devised for zero pressure gradient flows, has been previously shown to be inadequate for accelerating and decelerating turbulent boundary layers. In this paper, formulations for mean velocity profiles from the literature are applied and formulations for the temperature profiles are developed using a mixing length model. These formulations capture the effects of pressure gradients by including the convective and pressure gradient terms in the momentum and energy equations. The profiles which include these terms deviate considerably from the standard law of the wall; the temperature profiles more so than the velocity profiles. The new profiles agree well with experimental data. By looking at the various terms separately, it is shown why the velocity law of the wall is more robust to streamwise pressure gradients than is the thermal law of the wall. The modification to the velocity profile is useful for evaluation of more accurate skin friction coefficients from experimental data by the near-wall fitting technique. The temperature profile modification improves the accuracy with which one may extract turbulent Prandtl numbers from near-wall mean temperature data when they cannot be determined directly.

23 citations


Journal ArticleDOI
TL;DR: In this paper, a high free-stream turbulence boundary layer flow in a gas turbine airfoil was measured along a concave-curved test wall subject to high (initially 8 percent) free stream turbulence intensity and strong (K = (v/U 2 ∞) dU∞ /dx) as high as 9 x 10 -6 ) acceleration.
Abstract: Measurements from heated boundary layers along a concave-curved test wall subject to high (initially 8 percent) free-stream turbulence intensity and strong (K = (v/U 2 ∞) dU∞ /dx) as high as 9 x 10 -6 ) acceleration are presented and discussed. Conditions for the experiments were chosen to roughly simulate those present on the downstream half of the pressure side of a gas turbine airfoil. Mean velocity and temperature profiles as well as skin friction and heat transfer coefficients are presented. The transition zone is of extended length in spite of the high free-stream turbulence level. Transitional values of skin friction coefficients and Stanton numbers drop below flat-plate, low-free-stream-turbulence, turbulent flow, correlations, but remain well above laminar flow values. The mean velocity and temperature profiles exhibit clear changes in shape as the flow passes through transition. To the authors' knowledge, this is the first detailed documentation of a high-free-stream-turbulence boundary layer flow in such a strong acceleration field.

23 citations


Journal ArticleDOI
TL;DR: In this paper, the laminar-turbulent transition process has been documented in a concave-wall boundary layer subject to low (0.6 percent) free-stream turbulence intensity.
Abstract: The laminar-turbulent transition process has been documented in a concave-wall boundary layer subject to low (0.6 percent) free-stream turbulence intensity. Transition began at a Reynolds number, Rex (based on distance from the leading edge of the test wall), of 3.5 × 105 and was completed by 4.7 × 105 . The transition was strongly influenced by the presence of stationary, streamwise, Gortler vortices. Transition under similar conditions has been documented in previous studies, but because concave-wall transition tends to be rapid, measurements within the transition zone were sparse. In this study, emphasis is on measurements within the zone of intermittent flow. Twenty-five profiles of mean streamwise velocity, fluctuating streamwise velocity, and intermittency have been acquired at five values of Rex , and five spanwise locations relative to a Gortler vortex. The mean velocity profiles acquired near the vortex downwash sites exhibit inflection points and local minima. These minima, located in the outer part of the boundary layer, provide evidence of a “tilting” of the vortices in the spanwise direction. Profiles of fluctuating velocity and intermittency exhibit peaks near the locations of the minima in the mean velocity profiles. These peaks indicate that turbulence is generated in regions of high shear, which are relatively far from the wall. The transition mechanism in this flow is different from that on flat walls, where turbulence is produced in the near-wall region. The peak intermittency values in the profiles increase with Rex , but do not follow the “universal” distribution observed in most flat-wall, transitional boundary layers. The results have applications whenever strong concave curvature may result in the formation of Gortler vortices in otherwise 2-D flows.

10 citations


Journal ArticleDOI
TL;DR: In this paper, the boundary layer appears turbulent from the beginning of the upstream, concave wall and grows over the flat test wall downstream of the curved wall with negligible streamwise acceleration.
Abstract: Turbulence measurements for both momentum and heat transport are taken in a boundary layer over a flat recovery wall downstream of a concave wall (R = 0.97 m). The boundary layer appears turbulent from the beginning of the upstream, concave wall and grows over the flat test wall downstream of the curved wall with negligible streamwise acceleration. The strength of curvature at the bend exit, δ99.5 /R , is 0.04. The free-stream turbulence intensity (FSTI) is ~8 percent at the beginning of the curve and is nearly uniform at ~4.5 percent throughout the recovery wall. Comparisons are made with data taken in an earlier study, in the same test facility, but with a low FSTI (~0.6 percent). Results show that on the recovery wall, elevated FSTI enhances turbulent transport quantities such as −uν and νt in most of the outer part of the boundary layer, but near-wall values of νt remain unaffected. This is in contrast to near-wall νt values within the curve which decrease when FSTI is increased. At the bend exit, decreases of −uν and νt due to removal of curvature become more profound when FSTI is elevated, compared to low-FSTI behavior. Measurements in the core of the flow indicate that the high levels of cross transport of momentum over the upstream concave wall cease when curvature is removed. Other results show that turbulent Prandtl numbers over the recovery wall are reduced to ~0.9 when FSTI is elevated, consistent with the rise in Stanton numbers over the recovery wall.

9 citations





01 Jan 1997
TL;DR: In this article, the boundary layer appears turbulent from the beginning of the upstream, concave wall and grows over the flat test wall downstream of the curved wall with negligible streamwise acceleration.
Abstract: Turbulence measurements for both momentum and heat transport are taken in a boundary layer over a flat recovery wall downstream of a concave wall (R = 0.97 m). The boundary layer appears turbulent from the beginning of the upstream, concave wall and grows over the flat test wall downstream of the curved wall with negligible streamwise acceleration. The strength of curvature at the bend exit, δ99.5 /R , is 0.04. The free-stream turbulence intensity (FSTI) is ~8 percent at the beginning of the curve and is nearly uniform at ~4.5 percent throughout the recovery wall. Comparisons are made with data taken in an earlier study, in the same test facility, but with a low FSTI (~0.6 percent). Results show that on the recovery wall, elevated FSTI enhances turbulent transport quantities such as −uν and νt in most of the outer part of the boundary layer, but near-wall values of νt remain unaffected. This is in contrast to near-wall νt values within the curve which decrease when FSTI is increased. At the bend exit, decreases of −uν and νt due to removal of curvature become more profound when FSTI is elevated, compared to low-FSTI behavior. Measurements in the core of the flow indicate that the high levels of cross transport of momentum over the upstream concave wall cease when curvature is removed. Other results show that turbulent Prandtl numbers over the recovery wall are reduced to ~0.9 when FSTI is elevated, consistent with the rise in Stanton numbers over the recovery wall.