scispace - formally typeset
Search or ask a question
Author

Terrence W. Simon

Other affiliations: Motorola, DuPont, University of Texas at Arlington  ...read more
Bio: Terrence W. Simon is an academic researcher from University of Minnesota. The author has contributed to research in topics: Heat transfer & Turbulence. The author has an hindex of 37, co-authored 305 publications receiving 5025 citations. Previous affiliations of Terrence W. Simon include Motorola & DuPont.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a mixing length model was developed to capture the effects of pressure gradients by including the convective and pressure gradient terms in the momentum and energy equations, which deviate considerably from the standard law of the wall; the temperature profiles more so than the velocity profiles agree well with experimental data.
Abstract: The standard turbulent law of the wall, devised for zero pressure gradient flows, has been previously shown to be inadequate for accelerating and decelerating turbulent boundary layers. In this paper, formulations for mean velocity profiles from the literature are applied and formulations for the temperature profiles are developed using a mixing length model. These formulations capture the effects of pressure gradients by including the convective and pressure gradient terms in the momentum and energy equations. The profiles which include these terms deviate considerably from the standard law of the wall; the temperature profiles more so than the velocity profiles. The new profiles agree well with experimental data. By looking at the various terms separately, it is shown why the velocity law of the wall is more robust to streamwise pressure gradients than is the thermal law of the wall. The modification to the velocity profile is useful for evaluation of more accurate skin friction coefficients from experimental data by the near-wall fitting technique. The temperature profile modification improves the accuracy with which one may extract turbulent Prandtl numbers from near-wall mean temperature data when they cannot be determined directly.

23 citations

Journal ArticleDOI
TL;DR: In this paper, a high free-stream turbulence boundary layer flow in a gas turbine airfoil was measured along a concave-curved test wall subject to high (initially 8 percent) free stream turbulence intensity and strong (K = (v/U 2 ∞) dU∞ /dx) as high as 9 x 10 -6 ) acceleration.
Abstract: Measurements from heated boundary layers along a concave-curved test wall subject to high (initially 8 percent) free-stream turbulence intensity and strong (K = (v/U 2 ∞) dU∞ /dx) as high as 9 x 10 -6 ) acceleration are presented and discussed. Conditions for the experiments were chosen to roughly simulate those present on the downstream half of the pressure side of a gas turbine airfoil. Mean velocity and temperature profiles as well as skin friction and heat transfer coefficients are presented. The transition zone is of extended length in spite of the high free-stream turbulence level. Transitional values of skin friction coefficients and Stanton numbers drop below flat-plate, low-free-stream-turbulence, turbulent flow, correlations, but remain well above laminar flow values. The mean velocity and temperature profiles exhibit clear changes in shape as the flow passes through transition. To the authors' knowledge, this is the first detailed documentation of a high-free-stream-turbulence boundary layer flow in such a strong acceleration field.

23 citations

Journal ArticleDOI
TL;DR: In this paper, the effects of the ratio of jet spacing to swirl chamber radius and Reynolds numbers on swirl cooling performance were investigated with numerical simulation and a Nusselt number correlation on these parameters was suggested.
Abstract: In this paper, flow and heat transfer of a swirl chamber that models an internal cooling passage for a gas turbine airfoil leading edge is studied with numerical simulation. The geometry consists of a circular pipe, and rectangular section inlets that lead inlet flow to impinge tangentially on the circular pipe. The effects of the ratio of jet spacing to swirl chamber radius and Reynolds numbers on swirl cooling performance are investigated. The results indicate how the pressure loss and globally averaged Nusselt number on the swirl chamber wall increase with increases of Reynolds number and the ratio of jet spacing to swirl chamber radius. A Nusselt number correlation on these parameters is suggested. Also shown is how Nusselt numbers on the swirl chamber surface increase with the ratio of jet spacing to swirl chamber radius.

22 citations

01 Feb 1982
TL;DR: In this article, the authors measured the heat transfer rate through turbulent and transitional boundary layers on an isothermal, convexly curved wall and downstream flat plate and found that the effect of convex curvature on the fully turbulent boundary layer was a reduction of the local Stanton numbers 20% to 50% below those predicted for a flat wall under the same circumstances.
Abstract: Measurements were made of the heat transfer rate through turbulent and transitional boundary layers on an isothermal, convexly curved wall and downstream flat plate. The effect of convex curvature on the fully turbulent boundary layer was a reduction of the local Stanton numbers 20% to 50% below those predicted for a flat wall under the same circumstances. The recovery of the heat transfer rates on the downstream flat wall was extremely slow. After 60 cm of recovery length, the Stanton number was still typically 15% to 20% below the flat wall predicted value. Various effects important in the modeling of curved flows were studied separately. These are: the effect of initial boundary layer thickness, the effect of freestream velocity, the effect of freestream acceleration, the effect of unheated starting length, and the effect of the maturity of the boundary layer. An existing curvature prediction model was tested against this broad heat transfer data base to determine where it could appropriately be used for heat transfer predictions.

22 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, a review of the history of thermal energy storage with solid-liquid phase change has been carried out and three aspects have been the focus of this review: materials, heat transfer and applications.

4,019 citations

Book ChapterDOI
01 Jan 1997
TL;DR: The boundary layer equations for plane, incompressible, and steady flow are described in this paper, where the boundary layer equation for plane incompressibility is defined in terms of boundary layers.
Abstract: The boundary layer equations for plane, incompressible, and steady flow are $$\matrix{ {u{{\partial u} \over {\partial x}} + v{{\partial u} \over {\partial y}} = - {1 \over \varrho }{{\partial p} \over {\partial x}} + v{{{\partial ^2}u} \over {\partial {y^2}}},} \cr {0 = {{\partial p} \over {\partial y}},} \cr {{{\partial u} \over {\partial x}} + {{\partial v} \over {\partial y}} = 0.} \cr }$$

2,598 citations

01 Jan 2007

1,932 citations

01 Jan 2016
TL;DR: The numerical heat transfer and fluid flow is universally compatible with any devices to read and is available in the authors' digital library an online access to it is set as public so you can get it instantly.
Abstract: Thank you for reading numerical heat transfer and fluid flow. Maybe you have knowledge that, people have search numerous times for their favorite books like this numerical heat transfer and fluid flow, but end up in infectious downloads. Rather than reading a good book with a cup of coffee in the afternoon, instead they cope with some malicious virus inside their computer. numerical heat transfer and fluid flow is available in our digital library an online access to it is set as public so you can get it instantly. Our books collection spans in multiple countries, allowing you to get the most less latency time to download any of our books like this one. Merely said, the numerical heat transfer and fluid flow is universally compatible with any devices to read.

1,531 citations

Journal ArticleDOI
Issam Mudawar1
TL;DR: This paper explores the recent research developments in high-heat-flux thermal management and demonstrates that, while different cooling options can be tailored to the specific needs of individual applications, system considerations always play a paramount role in determining the most suitable cooling scheme.
Abstract: This paper explores the recent research developments in high-heat-flux thermal management. Cooling schemes such as pool boiling, detachable heat sinks, channel flow boiling, microchannel and mini-channel heat sinks, jet-impingement, and sprays, are discussed and compared relative to heat dissipation potential, reliability, and packaging concerns. It is demonstrated that, while different cooling options can be tailored to the specific needs of individual applications, system considerations always play a paramount role in determining the most suitable cooling scheme. It is also shown that extensive fundamental electronic cooling knowledge has been amassed over the past two decades. Yet there is now a growing need for hardware innovations rather than perturbations to those fundamental studies. An example of these innovations is the cooling of military avionics, where research findings from the electronic cooling literature have made possible the development of a new generation of cooling hardware which promise order of magnitude increases in heat dissipation compared to today's cutting edge avionics cooling schemes.

824 citations