scispace - formally typeset
Search or ask a question
Author

Terrence W. Simon

Other affiliations: Motorola, DuPont, University of Texas at Arlington  ...read more
Bio: Terrence W. Simon is an academic researcher from University of Minnesota. The author has contributed to research in topics: Heat transfer & Turbulence. The author has an hindex of 37, co-authored 305 publications receiving 5025 citations. Previous affiliations of Terrence W. Simon include Motorola & DuPont.


Papers
More filters
Proceedings ArticleDOI
25 Jun 2007
TL;DR: In this paper, a segmented-involute-foil regenerator has been designed, micro-fabricated and tested in an oscillating-flow rig with excellent results, with a performance figure of merit (roughly the ratio of heat transfer to pressure drop) of about twice that of the 90% random fiber currently used in small ~ 100 W Stirling space-power convertors in the Reynolds Number range of interest (50-100).
Abstract: A segmented involute-foil regenerator has been designed, microfabricated and tested in an oscillating-flow rig with excellent results. During the Phase I effort, several approximations of parallel-plate regenerator geometry were chosen as potential candidates for a new microfabrication concept. Potential manufacturers and processes were surveyed. The selected concept consisted of stacked segmented-involute-foil disks (or annular portions of disks), originally to be microfabricated from stainless-steel via the LiGA (lithography, electroplating, and molding) process and EDM (electric discharge machining). During Phase II, re-planning of the effort led to test plans based on nickel disks, microfabricated via the LiGA process, only. A stack of nickel segmented-involute-foil disks was tested in an oscillating-flow test rig. These test results yielded a performance figure of merit (roughly the ratio of heat transfer to pressure drop) of about twice that of the 90% random fiber currently used in small ~ 100 W Stirling space-power convertors in the Reynolds Number range of interest (50-100). A Phase III effort is now underway to fabricate and test a segmented-involute-foil regenerator in a Stirling convertor. Though funding limitations prevent optimization of the Stirling engine geometry for use with this regenerator, the Sage computer code will be used to help evaluate the engine test results. Previous Sage Stirling model projections have indicated that a segmented-involute-foil regenerator is capable of improving the performance of an optimized involute-foil engine by 6-9%; it is also anticipated that such involute-foil geometries will be more reliable and easier to manufacture with tight-tolerance characteristics, than random-fiber or wire-screen regenerators. Beyond the near-term Phase III regenerator fabrication and engine testing, other goals are (1) fabrication from a material suitable for high temperature Stirling operation (up to 850 C for current engines; up to 1200 C for a potential engine-cooler for a Venus mission), and (2) reduction of the cost of the fabrication process to make it more suitable for terrestrial applications of segmented involute foils. Past attempts have been made to use wrapped foils to approximate the large theoretical figures of merit projected for parallel plates. Such metal wrapped foils have never proved very successful, apparently due to the difficulties of fabricating wrapped-foils with uniform gaps and maintaining the gaps under the stress of time-varying temperature gradients during start-up and shut-down, and relatively-steady temperature gradients during normal operation. In contrast, stacks of involute-foil disks, with each disk consisting of multiple involute-foil segments held between concentric circular ribs, have relatively robust structures. The oscillating-flow rig tests of the segmented-involute-foil regenerator have demonstrated a shift in regenerator performance strongly in the direction of the theoretical performance of ideal parallel-plate regenerators.

20 citations

Journal ArticleDOI
TL;DR: In this paper, numerical simulations of flow and heat transfer in a serpentine heat exchanger configuration are presented to demonstrate the application of porous media techniques in heat exchange analysis, using two different approaches.

20 citations

Proceedings ArticleDOI
08 May 2000
TL;DR: In this article, the authors studied the three-dimensional flow and temperature distribution in a nozzle guide vane that has one flat and one contoured endwall with and without film cooling injected from two slots, one on each endwall located just upstream of the airfoil.
Abstract: Computations were performed to study the three-dimensional flow and temperature distribution in a nozzle guide vane that has one flat and one contoured endwall with and without film cooling injected from two slots, one on each endwall located just upstream of the airfoil. For the contoured endwall, two locations of the same contouring were investigated, one with all contouring upstream of the airfoil and another with the contouring starting upstream of the airfoil and continuing through the airfoil passage.Results obtained show that when the contouring is all upstream of the airfoil, secondary flows on both the flat and the contoured endwalls are similar in magnitude. When the contouring starts upstream of the airfoil and continues through the airfoil passage, secondary flows on the contoured endwall are markedly weaker than those on the flat endwall. With weaker secondary flows on the contoured endwall, film-cooling effectiveness there is greatly improved.This computational study is based on the ensemble-averaged conservation equations of mass, momentum (compressible Navier-Stokes), and energy. Effects of turbulence were modeled by the low Reynolds number shear-stress transport k-ω model. Solutions were generated by a cell-centered, finite-volume method that uses third-order accurate flux-difference splitting of Roe with limiters and multigrid acceleration of a diagonalized ADI scheme with local time stepping on patched/embedded structured grids.Copyright © 2000 by ASME

20 citations

Journal ArticleDOI
TL;DR: In this article, the effects of primary hole shape and injection angle on film cooling with primary and secondary hole injection were investigated. But the authors focused on the effect of the secondary hole shape.
Abstract: Film cooling with primary and secondary hole injection is numerically investigated. Effects of primary hole shape and secondary hole injection angle are documented. Each primary hole, either cylind...

20 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, a review of the history of thermal energy storage with solid-liquid phase change has been carried out and three aspects have been the focus of this review: materials, heat transfer and applications.

4,019 citations

Book ChapterDOI
01 Jan 1997
TL;DR: The boundary layer equations for plane, incompressible, and steady flow are described in this paper, where the boundary layer equation for plane incompressibility is defined in terms of boundary layers.
Abstract: The boundary layer equations for plane, incompressible, and steady flow are $$\matrix{ {u{{\partial u} \over {\partial x}} + v{{\partial u} \over {\partial y}} = - {1 \over \varrho }{{\partial p} \over {\partial x}} + v{{{\partial ^2}u} \over {\partial {y^2}}},} \cr {0 = {{\partial p} \over {\partial y}},} \cr {{{\partial u} \over {\partial x}} + {{\partial v} \over {\partial y}} = 0.} \cr }$$

2,598 citations

01 Jan 2007

1,932 citations

01 Jan 2016
TL;DR: The numerical heat transfer and fluid flow is universally compatible with any devices to read and is available in the authors' digital library an online access to it is set as public so you can get it instantly.
Abstract: Thank you for reading numerical heat transfer and fluid flow. Maybe you have knowledge that, people have search numerous times for their favorite books like this numerical heat transfer and fluid flow, but end up in infectious downloads. Rather than reading a good book with a cup of coffee in the afternoon, instead they cope with some malicious virus inside their computer. numerical heat transfer and fluid flow is available in our digital library an online access to it is set as public so you can get it instantly. Our books collection spans in multiple countries, allowing you to get the most less latency time to download any of our books like this one. Merely said, the numerical heat transfer and fluid flow is universally compatible with any devices to read.

1,531 citations

Journal ArticleDOI
Issam Mudawar1
TL;DR: This paper explores the recent research developments in high-heat-flux thermal management and demonstrates that, while different cooling options can be tailored to the specific needs of individual applications, system considerations always play a paramount role in determining the most suitable cooling scheme.
Abstract: This paper explores the recent research developments in high-heat-flux thermal management. Cooling schemes such as pool boiling, detachable heat sinks, channel flow boiling, microchannel and mini-channel heat sinks, jet-impingement, and sprays, are discussed and compared relative to heat dissipation potential, reliability, and packaging concerns. It is demonstrated that, while different cooling options can be tailored to the specific needs of individual applications, system considerations always play a paramount role in determining the most suitable cooling scheme. It is also shown that extensive fundamental electronic cooling knowledge has been amassed over the past two decades. Yet there is now a growing need for hardware innovations rather than perturbations to those fundamental studies. An example of these innovations is the cooling of military avionics, where research findings from the electronic cooling literature have made possible the development of a new generation of cooling hardware which promise order of magnitude increases in heat dissipation compared to today's cutting edge avionics cooling schemes.

824 citations