scispace - formally typeset
Search or ask a question
Author

Terrence W. Simon

Other affiliations: Motorola, DuPont, University of Texas at Arlington  ...read more
Bio: Terrence W. Simon is an academic researcher from University of Minnesota. The author has contributed to research in topics: Heat transfer & Turbulence. The author has an hindex of 37, co-authored 305 publications receiving 5025 citations. Previous affiliations of Terrence W. Simon include Motorola & DuPont.


Papers
More filters
01 Jan 1997
TL;DR: In this article, the boundary layer appears turbulent from the beginning of the upstream, concave wall and grows over the flat test wall downstream of the curved wall with negligible streamwise acceleration.
Abstract: Turbulence measurements for both momentum and heat transport are taken in a boundary layer over a flat recovery wall downstream of a concave wall (R = 0.97 m). The boundary layer appears turbulent from the beginning of the upstream, concave wall and grows over the flat test wall downstream of the curved wall with negligible streamwise acceleration. The strength of curvature at the bend exit, δ99.5 /R , is 0.04. The free-stream turbulence intensity (FSTI) is ~8 percent at the beginning of the curve and is nearly uniform at ~4.5 percent throughout the recovery wall. Comparisons are made with data taken in an earlier study, in the same test facility, but with a low FSTI (~0.6 percent). Results show that on the recovery wall, elevated FSTI enhances turbulent transport quantities such as −uν and νt in most of the outer part of the boundary layer, but near-wall values of νt remain unaffected. This is in contrast to near-wall νt values within the curve which decrease when FSTI is increased. At the bend exit, decreases of −uν and νt due to removal of curvature become more profound when FSTI is elevated, compared to low-FSTI behavior. Measurements in the core of the flow indicate that the high levels of cross transport of momentum over the upstream concave wall cease when curvature is removed. Other results show that turbulent Prandtl numbers over the recovery wall are reduced to ~0.9 when FSTI is elevated, consistent with the rise in Stanton numbers over the recovery wall.

1 citations

01 Mar 1992
TL;DR: In this paper, the results of a fluid mechanics measurement program in oscillating flow within a circular duct are presented, with a survey of transition behavior over a range of oscillation frequency and magnitude and a detailed study at a single operating point.
Abstract: Results of a fluid mechanics measurement program in oscillating flow within a circular duct are presented. The program began with a survey of transition behavior over a range of oscillation frequency and magnitude and continued with a detailed study at a single operating point. Such measurements were made in support of Stirling engine development. Values of three dimensionless parameters, Re sub max, Re sub w, and A sub R, embody the velocity amplitude, frequency of oscillation, and mean fluid displacement of the cycle, respectively. Measurements were first made over a range of these parameters that are representative of the heat exchanger tubes in the heater section of NASA's Stirling cycle Space Power Research Engine (SPRE). Measurements were taken of the axial and radial components of ensemble-averaged velocity and rms velocity fluctuation and the dominant Reynolds shear stress, at various radial positions for each of four axial stations. In each run, transition from laminar to turbulent flow, and its reverse, were identified and sufficient data was gathered to propose the transition mechanism. Volume 2 contains data reduction program listings and tabulated data (including its graphics).

1 citations

01 Jan 1987
TL;DR: In this paper, the effects of streamwise convex curvature, recovery, and freestream turbulence intensity on the turbulent transport of heat and momentum in a mature boundary layer were studied using a specially designed three-wire hot-wire probe.
Abstract: The effects of streamwise convex curvature, recovery, and freestream turbulence intensity on the turbulent transport of heat and momentum in a mature boundary layer are studied using a specially designed three-wire hot-wire probe. Increased freestream turbulence is found to increase the profiles throughout the boundary layer on the flat developing wall. Curvature effects were found to dominate turbulence intensity effects for the present cases considered. For the higher TI (turbulence intensity) case, negative values of the turbulent Prandtl number are found in the outer half of the boundary layer, indicating a breakdown in Reynolds analogy.

1 citations

Proceedings ArticleDOI
15 Nov 2013
TL;DR: In this paper, the effects of an engine-representative combustor exit temperature profile and different disc cavity leakage flow rates on endwall adiabatic effectiveness distributions and passage temperature fields in a high pressure turbine rotor stage of a gas turbine are experimentally documented.
Abstract: The effects of an engine-representative combustor exit temperature profile and different disc cavity leakage flow rates on endwall adiabatic effectiveness distributions and passage temperature fields in a high pressure turbine rotor stage of a gas turbine are experimentally documented. The measurements are made on a stationary linear blade row cascade with an axisymmetrically-contoured endwall of modern engine geometry and with engine-representative approach flow thermal and fluid mechanics characteristics. The measurements give insight into mixing of coolant emerging as leakage flow and combustor liner coolant mix with hot core gases ahead of the airfoil row. Reported results are thermal fields in the passage, adiabatic wall temperatures and adiabatic effectiveness values in using an engine-representative approach flow temperature profile and with approach flow temperature profiles with 1) no coolant in the approach flow (flat profile) and 2) coolant only within 10% of the span (approach flow profile with a thin thermal boundary layer).The results give insight into mixing between the leakage flow and the mainstream passage flow and its effects on endwall cooling. The results demonstrate that for the conditions studied; much of the endwall cooling is contributed by the coolant in the approach flow. This is an important result that has previously not been well documented.Copyright © 2013 by ASME

1 citations

Proceedings ArticleDOI
13 Jun 2022
TL;DR: In this article , the authors report detailed experimental tests that document secondary flows and coolant transport throughout the vane passage for four combustor coolant flowrates, showing that the location and size of the impingement vortex are affected by the cooling surface surface.
Abstract: Due to the proximity of the first stage gas turbine vanes to the combustor, coolant introduced to the combustor walls interacts with the endwall film coolant and changes the vane passage flow physics. Recent results show that combustor coolant contributes significantly to cooling the endwall and vane surfaces. In this paper, the traditional combustor-turbine interface was modified to improve overall cooling performance. The performance of this new injection cooling scheme on passage fluid dynamics and surface cooling is assessed. The first of this two-part paper reports detailed experimental tests that document secondary flows and coolant transport throughout the vane passage for four combustor coolant flowrates. The experimental facility imitates combustor coolant injection and engine-level turbulence and has a modified transition duct design, called the ‘close-coupled combustor-turbine interface.’ The ‘impingement vortex’ seen in previous studies with combustor cooling appears as the dominant secondary flow. It is observed in the present study over a wide range of flowrates, confirming its tie to the combustor coolant flowrate and not the combustor-turbine interface geometry. It was found, however, that the location and size of the impingement vortex are affected by coolant flowrate. The second of this two-part paper discusses the impact of the observed secondary flows on cooling vane passage surfaces.

1 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, a review of the history of thermal energy storage with solid-liquid phase change has been carried out and three aspects have been the focus of this review: materials, heat transfer and applications.

4,019 citations

Book ChapterDOI
01 Jan 1997
TL;DR: The boundary layer equations for plane, incompressible, and steady flow are described in this paper, where the boundary layer equation for plane incompressibility is defined in terms of boundary layers.
Abstract: The boundary layer equations for plane, incompressible, and steady flow are $$\matrix{ {u{{\partial u} \over {\partial x}} + v{{\partial u} \over {\partial y}} = - {1 \over \varrho }{{\partial p} \over {\partial x}} + v{{{\partial ^2}u} \over {\partial {y^2}}},} \cr {0 = {{\partial p} \over {\partial y}},} \cr {{{\partial u} \over {\partial x}} + {{\partial v} \over {\partial y}} = 0.} \cr }$$

2,598 citations

01 Jan 2007

1,932 citations

01 Jan 2016
TL;DR: The numerical heat transfer and fluid flow is universally compatible with any devices to read and is available in the authors' digital library an online access to it is set as public so you can get it instantly.
Abstract: Thank you for reading numerical heat transfer and fluid flow. Maybe you have knowledge that, people have search numerous times for their favorite books like this numerical heat transfer and fluid flow, but end up in infectious downloads. Rather than reading a good book with a cup of coffee in the afternoon, instead they cope with some malicious virus inside their computer. numerical heat transfer and fluid flow is available in our digital library an online access to it is set as public so you can get it instantly. Our books collection spans in multiple countries, allowing you to get the most less latency time to download any of our books like this one. Merely said, the numerical heat transfer and fluid flow is universally compatible with any devices to read.

1,531 citations

Journal ArticleDOI
Issam Mudawar1
TL;DR: This paper explores the recent research developments in high-heat-flux thermal management and demonstrates that, while different cooling options can be tailored to the specific needs of individual applications, system considerations always play a paramount role in determining the most suitable cooling scheme.
Abstract: This paper explores the recent research developments in high-heat-flux thermal management. Cooling schemes such as pool boiling, detachable heat sinks, channel flow boiling, microchannel and mini-channel heat sinks, jet-impingement, and sprays, are discussed and compared relative to heat dissipation potential, reliability, and packaging concerns. It is demonstrated that, while different cooling options can be tailored to the specific needs of individual applications, system considerations always play a paramount role in determining the most suitable cooling scheme. It is also shown that extensive fundamental electronic cooling knowledge has been amassed over the past two decades. Yet there is now a growing need for hardware innovations rather than perturbations to those fundamental studies. An example of these innovations is the cooling of military avionics, where research findings from the electronic cooling literature have made possible the development of a new generation of cooling hardware which promise order of magnitude increases in heat dissipation compared to today's cutting edge avionics cooling schemes.

824 citations