scispace - formally typeset
Search or ask a question
Author

Terry B. Strom

Other affiliations: University of Cologne
Bio: Terry B. Strom is an academic researcher from Beth Israel Deaconess Medical Center. The author has contributed to research in topics: Transplantation & T cell. The author has an hindex of 82, co-authored 373 publications receiving 26714 citations. Previous affiliations of Terry B. Strom include University of Cologne.


Papers
More filters
Journal ArticleDOI
TL;DR: It is concluded that CD39 and CD73 are surface markers of T reg cells that impart a specific biochemical signature characterized by adenosine generation that has functional relevance for cellular immunoregulation.
Abstract: The study of T regulatory cells (T reg cells) has been limited by the lack of specific surface markers and an inability to define mechanisms of suppression. We show that the expression of CD39/ENTPD1 in concert with CD73/ecto-5'-nucleotidase distinguishes CD4(+)/CD25(+)/Foxp3(+) T reg cells from other T cells. These ectoenzymes generate pericellular adenosine from extracellular nucleotides. The coordinated expression of CD39/CD73 on T reg cells and the adenosine A2A receptor on activated T effector cells generates immunosuppressive loops, indicating roles in the inhibitory function of T reg cells. Consequently, T reg cells from Cd39-null mice show impaired suppressive properties in vitro and fail to block allograft rejection in vivo. We conclude that CD39 and CD73 are surface markers of T reg cells that impart a specific biochemical signature characterized by adenosine generation that has functional relevance for cellular immunoregulation.

2,133 citations

Journal ArticleDOI
26 Jul 2007-Nature
TL;DR: It is shown that IL-6-deficient (Il6-/-) mice do not develop a TH17 response and their peripheral repertoire is dominated by Foxp3+ Treg cells, suggesting an additional pathway by which TH17 cells might be generated in vivo.
Abstract: On activation, naive T cells differentiate into effector T-cell subsets with specific cytokine phenotypes and specialized effector functions. Recently a subset of T cells, distinct from T helper (T(H))1 and T(H)2 cells, producing interleukin (IL)-17 (T(H)17) was defined and seems to have a crucial role in mediating autoimmunity and inducing tissue inflammation. We and others have shown that transforming growth factor (TGF)-beta and IL-6 together induce the differentiation of T(H)17 cells, in which IL-6 has a pivotal function in dictating whether T cells differentiate into Foxp3+ regulatory T cells (T(reg) cells) or T(H)17 cells. Whereas TGF-beta induces Foxp3 and generates T(reg) cells, IL-6 inhibits the generation of T(reg) cells and induces the production of IL-17, suggesting a reciprocal developmental pathway for T(H)17 and T(reg) cells. Here we show that IL-6-deficient (Il6-/-) mice do not develop a T(H)17 response and their peripheral repertoire is dominated by Foxp3+ T(reg) cells. However, deletion of T(reg) cells leads to the reappearance of T(H)17 cells in Il6-/- mice, suggesting an additional pathway by which T(H)17 cells might be generated in vivo. We show that an IL-2 cytokine family member, IL-21, cooperates with TGF-beta to induce T(H)17 cells in naive Il6-/- T cells and that IL-21-receptor-deficient T cells are defective in generating a T(H)17 response.

1,839 citations

Journal ArticleDOI
20 Oct 2000-Science
TL;DR: The protective efficacy of vaccine-elicited immune responses against a pathogenic SHIV-89.6P challenge in rhesus monkeys is reported, with no evidence of clinical disease or mortality after challenge.
Abstract: With accumulating evidence indicating the importance of cytotoxic T lymphocytes (CTLs) in containing human immunodeficiency virus-1 (HIV-1) replication in infected individuals, strategies are being pursued to elicit virus-specific CTLs with prototype HIV-1 vaccines. Here, we report the protective efficacy of vaccine-elicited immune responses against a pathogenic SHIV-89.6P challenge in rhesus monkeys. Immune responses were elicited by DNA vaccines expressing SIVmac239 Gag and HIV-1 89.6P Env, augmented by the administration of the purified fusion protein IL-2/Ig, consisting of interleukin-2 (IL-2) and the Fc portion of immunoglobulin G (IgG), or a plasmid encoding IL-2/Ig. After SHIV-89.6P infection, sham-vaccinated monkeys developed weak CTL responses, rapid loss of CD4+ T cells, no virus-specific CD4+ T cell responses, high setpoint viral loads, significant clinical disease progression, and death in half of the animals by day 140 after challenge. In contrast, all monkeys that received the DNA vaccines augmented with IL-2/Ig were infected, but demonstrated potent secondary CTL responses, stable CD4+ T cell counts, preserved virus-specific CD4+ T cell responses, low to undetectable setpoint viral loads, and no evidence of clinical disease or mortality by day 140 after challenge.

926 citations

Journal ArticleDOI
TL;DR: The data indicate that induction of T-cell apoptosis and peripheral allograft tolerance is prevented by blocking both signal 1 and signal 2 ofT-cell activation.
Abstract: The alloimmune response against fully MHC-mismatched allografts, compared with immune responses to nominal antigens, entails an unusually large clonal size of alloreactive T cells. Thus, induction of peripheral allograft tolerance established in the absence of immune system ablation and reconstitution is a challenging task in transplantation. Here, we determined whether a reduction in the mass of alloreactive T cells due to apoptosis is an essential initial step for induction of stable allograft tolerance with non-lymphoablative therapy. Blocking both CD28-B7 and CD40-CD40 ligand interactions (co-stimulation blockade) inhibited proliferation of alloreactive T cells in vivo while allowing cell cycle-dependent T-cell apoptosis of proliferating T cells, with permanent engraftment of cardiac allografts but not skin allografts. Treatment with rapamycin plus co-stimulation blockade resulted in massive apoptosis of alloreactive T cells and produced stable skin allograft tolerance, a very stringent test of allograft tolerance. In contrast, treatment with cyclosporine A and co-stimulation blockade abolished T-cell proliferation and apoptosis, as well as the induction of stable allograft tolerance. Our data indicate that induction of T-cell apoptosis and peripheral allograft tolerance is prevented by blocking both signal 1 and signal 2 of T-cell activation.

778 citations

Journal ArticleDOI
31 Aug 2006-Nature
TL;DR: The results obtained in this study establish that mast cells are essential in CD4+CD25+Foxp3+ regulatory T (TReg)-cell-dependent peripheral tolerance, and indicate that IL-9 represents the functional link through which activated TReg cells recruit and activate mast cells to mediate regional immune suppression.
Abstract: Contrary to the proinflammatory role of mast cells in allergic disorders, the results obtained in this study establish that mast cells are essential in CD4(+)CD25(+)Foxp3(+) regulatory T (T-Reg)-cell-dependent peripheral tolerance. Here we confirm that tolerant allografts, which are sustained owing to the immunosuppressive effects of T-Reg cells, acquire a unique genetic signature dominated by the expression of mast-cell-gene products. We also show that mast cells are crucial for allograft tolerance, through the inability to induce tolerance in mast-cell-deficient mice. High levels of interleukin (IL)-9 - a mast cell growth and activation factor - are produced by activated T-Reg cells, and IL-9 production seems important in mast cell recruitment to, and activation in, tolerant tissue. Our data indicate that IL-9 represents the functional link through which activated T-Reg cells recruit and activate mast cells to mediate regional immune suppression, because neutralization of IL-9 greatly accelerates allograft rejection in tolerant mice. Finally, immunohistochemical analysis clearly demonstrates the existence of this novel T-Reg - IL-9-mast cell relationship within tolerant allografts.

721 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Preliminary clinical findings with blockers of additional immune-checkpoint proteins, such as programmed cell death protein 1 (PD1), indicate broad and diverse opportunities to enhance antitumour immunity with the potential to produce durable clinical responses.
Abstract: Immune checkpoints refer to the plethora of inhibitory pathways that are crucial to maintaining self-tolerance. Tumour cells induce immune checkpoints to evade immunosurveillance. This Review discusses the progress in targeting immune checkpoints, the considerations for combinatorial therapy and the potential for additional immune-checkpoint targets.

10,602 citations

Journal ArticleDOI
TL;DR: This review considers recent findings regarding GC action and generates criteria for determining whether a particular GC action permits, stimulates, or suppresses an ongoing stress-response or, as an additional category, is preparative for a subsequent stressor.
Abstract: The secretion of glucocorticoids (GCs) is a classic endocrine response to stress. Despite that, it remains controversial as to what purpose GCs serve at such times. One view, stretching back to the time of Hans Selye, posits that GCs help mediate the ongoing or pending stress response, either via basal levels of GCs permitting other facets of the stress response to emerge efficaciously, and/or by stress levels of GCs actively stimulating the stress response. In contrast, a revisionist viewpoint posits that GCs suppress the stress response, preventing it from being pathologically overactivated. In this review, we consider recent findings regarding GC action and, based on them, generate criteria for determining whether a particular GC action permits, stimulates, or suppresses an ongoing stressresponse or, as an additional category, is preparative for a subsequent stressor. We apply these GC actions to the realms of cardiovascular function, fluid volume and hemorrhage, immunity and inflammation, metabolism, neurobiology, and reproductive physiology. We find that GC actions fall into markedly different categories, depending on the physiological endpoint in question, with evidence for mediating effects in some cases, and suppressive or preparative in others. We then attempt to assimilate these heterogeneous GC actions into a physiological whole. (Endocrine Reviews 21: 55‐ 89, 2000)

6,707 citations

Journal ArticleDOI
TL;DR: Findings that have advanced the understanding of IL-10 and its receptor are highlighted, as well as its in vivo function in health and disease.
Abstract: Interleukin-10 (IL-10), first recognized for its ability to inhibit activation and effector function of T cells, monocytes, and macrophages, is a multifunctional cytokine with diverse effects on most hemopoietic cell types. The principal routine function of IL-10 appears to be to limit and ultimately terminate inflammatory responses. In addition to these activities, IL-10 regulates growth and/or differentiation of B cells, NK cells, cytotoxic and helper T cells, mast cells, granulocytes, dendritic cells, keratinocytes, and endothelial cells. IL-10 plays a key role in differentiation and function of a newly appreciated type of T cell, the T regulatory cell, which may figure prominently in control of immune responses and tolerance in vivo. Uniquely among hemopoietic cytokines, IL-10 has closely related homologs in several virus genomes, which testify to its crucial role in regulating immune and inflammatory responses. This review highlights findings that have advanced our understanding of IL-10 and its receptor, as well as its in vivo function in health and disease.

6,308 citations

Journal ArticleDOI
TL;DR: The investigation of the differentiation, effector function, and regulation of Th17 cells has opened up a new framework for understanding T cell differentiation and now appreciate the importance of Th 17 cells in clearing pathogens during host defense reactions and in inducing tissue inflammation in autoimmune disease.
Abstract: CD4+ T cells, upon activation and expansion, develop into different T helper cell subsets with different cytokine profiles and distinct effector functions. Until recently, T cells were divided into Th1 or Th2 cells, depending on the cytokines they produce. A third subset of IL-17-producing effector T helper cells, called Th17 cells, has now been discovered and characterized. Here, we summarize the current information on the differentiation and effector functions of the Th17 lineage. Th17 cells produce IL-17, IL-17F, and IL-22, thereby inducing a massive tissue reaction owing to the broad distribution of the IL-17 and IL-22 receptors. Th17 cells also secrete IL-21 to communicate with the cells of the immune system. The differentiation factors (TGF-β plus IL-6 or IL-21), the growth and stabilization factor (IL-23), and the transcription factors (STAT3, RORγt, and RORα) involved in the development of Th17 cells have just been identified. The participation of TGF-β in the differentiation of Th17 cells places ...

4,548 citations

Journal ArticleDOI
TL;DR: A single acquired mutation of JAK2 was noted in more than half of patients with a myeloproliferative disorder and its presence in all erythropoietin-independent erythroid colonies demonstrates a link with growth factor hypersensitivity, a key biological feature of these disorders.

3,326 citations