scispace - formally typeset
Search or ask a question
Author

Terry Lechler

Bio: Terry Lechler is an academic researcher from Duke University. The author has contributed to research in topics: Adherens junction & Microtubule. The author has an hindex of 29, co-authored 60 publications receiving 3616 citations. Previous affiliations of Terry Lechler include Harvard University & Howard Hughes Medical Institute.


Papers
More filters
Journal ArticleDOI
08 Sep 2005-Nature
TL;DR: It is shown that basal epidermal cells use their polarity to divide asymmetrically, generating a committed suprabasal cell and a proliferative basal cell and it is demonstrated that integrins and cadherins are essential for the apical localization of atypical protein kinase C, the Par3–LGN–Inscuteable complex and NuMA–dynactin to align the spindle.
Abstract: To perform its function as an effective physical barrier our skin forms several layers of epidermal cells that are continually renewed. How this process occurs has been unclear, but previous studies in cultured skin cells suggested that stem cells at the base of the epidermis form new cells that migrate outwards to the skin surface. Work on mouse embryos now shows that the parent stem cells anchored at the base of the epidermis have the novel ability to replicate asymmetrically. They generate a ‘suprabasal’ cell, packed with integrins and growth factors, that stays put and above it a proliferative basal cell primed for differentiation and migration. The epidermis is a stratified squamous epithelium forming the barrier that excludes harmful microbes and retains body fluids. To perform these functions, proliferative basal cells in the innermost layer periodically detach from an underlying basement membrane of extracellular matrix, move outward and eventually die. Once suprabasal, cells stop dividing and enter a differentiation programme to form the barrier1. The mechanism of stratification is poorly understood. Although studies in vitro have led to the view that stratification occurs through the delamination and subsequent movement of epidermal cells2,3,4, most culture conditions favour keratinocytes that lack the polarity and cuboidal morphology of basal keratinocytes in tissue. These features could be important in considering an alternative mechanism, that stratification occurs through asymmetric cell divisions in which the mitotic spindle orients perpendicularly to the basement membrane5,6,7. Here we show that basal epidermal cells use their polarity to divide asymmetrically, generating a committed suprabasal cell and a proliferative basal cell. We further demonstrate that integrins and cadherins are essential for the apical localization of atypical protein kinase C, the Par3–LGN–Inscuteable complex and NuMA–dynactin to align the spindle.

958 citations

Journal ArticleDOI
TL;DR: It is shown that Bee1p and the Arp2/3 complex co-immunoprecipitate when expressed at endogenous levels, and that this interaction requires both the Arc15p and Arc19p subunits of the ArP2/ 3 complex.

233 citations

Journal ArticleDOI
TL;DR: Combined deletions of the Arp2/3-interacting domains of Bee1p and the type I myosins abolish actin nucleation sites at the cortex, suggesting that these proteins function redundantly in the activation of the actin-related protein Arp 2/3 complex.
Abstract: The generation of cortical actin filaments is necessary for processes such as cell motility and cell polarization. Several recent studies have demonstrated that Wiskott-Aldrich syndrome protein (WASP) family proteins and the actin-related protein (Arp) 2/3 complex are key factors in the nucleation of actin filaments in diverse eukaryotic organisms. To identify other factors involved in this process, we have isolated proteins that bind to Bee1p/Las17p, the yeast WASP-like protein, by affinity chromatography and mass spectroscopic analysis. The yeast type I myosins, Myo3p and Myo5p, have both been identified as Bee1p-interacting proteins. Like Bee1p, these myosins are essential for cortical actin assembly as assayed by in vitro reconstitution of actin nucleation sites in permeabilized yeast cells. Analysis using this assay further demonstrated that the motor activity of these myosins is required for the polymerization step, and that actin polymerization depends on phosphorylation of myosin motor domain by p21-activated kinases (PAKs), downstream effectors of the small guanosine triphosphatase, Cdc42p. The type I myosins also interact with the Arp2/3 complex through a sequence at the end of the tail domain homologous to the Arp2/3-activating region of WASP-like proteins. Combined deletions of the Arp2/3-interacting domains of Bee1p and the type I myosins abolish actin nucleation sites at the cortex, suggesting that these proteins function redundantly in the activation of the Arp2/3 complex.

225 citations

Journal ArticleDOI
TL;DR: These findings suggest that, if no compensatory mechanisms exist, E-cadherin loss may be incompatible with epithelial tissue survival, whereas partial compensation can result in alterations in differentiation and proliferation.
Abstract: Loss of E-cadherin has been associated with human cancers, and yet in the early mouse embryo and the lactating mammary gland, the E-cadherin null state results in tissue dysfunction and cell death. Here we targeted loss of E-cadherin in skin epithelium. The epidermal basal layer responded by elevating P-cadherin, enabling these cells to maintain adherens junctions. Suprabasal layers upregulated desmosomal cadherins, but without classical cadherins, terminal differentiation was impaired. Progressive hyperplasia developed with age, a possible consequence of proliferative maintenance in basal cells coupled with defects in terminal differentiation. In contrast, hair follicles lost integrity of the inner root sheath and hair cuticle without apparent elevation of cadherins. These findings suggest that, if no compensatory mechanisms exist, E-cadherin loss may be incompatible with epithelial tissue survival, whereas partial compensation can result in alterations in differentiation and proliferation.

188 citations

Journal ArticleDOI
TL;DR: A differentiation-specific rearrangement of the microtubule cytoskeleton in epidermis is uncovers, and an essential role for desmoplakin is defined in the process.
Abstract: Despite their importance in cell shape and polarity generation, the organization of microtubules in differentiated cells and tissues remains relatively unexplored in mammals. We generated transgenic mice in which the epidermis expresses a fluorescently labeled microtubule-binding protein and show that in epidermis and in cultured keratinocytes, microtubules stereotypically reorganize as they differentiate. In basal cells, microtubules form a cytoplasmic network emanating from an apical centrosome. In suprabasal cells, microtubules concentrate at cell–cell junctions. The centrosome retains its ability to nucleate microtubules in differentiated cells, but no longer anchors them. During epidermal differentiation, ninein, which is a centrosomal protein required for microtubule anchoring (Dammermann, A., and A. Merdes. 2002. J. Cell Biol. 159:255–266; Delgehyr, N., J. Sillibourne, and M. Bornens. 2005. J. Cell Sci. 118:1565–1575; Mogensen, M.M., A. Malik, M. Piel, V. Bouckson-Castaing, and M. Bornens. 2000. J. Cell Sci. 113:3013–3023), is lost from the centrosome and is recruited to desmosomes by desmoplakin (DP). Loss of DP prevents accumulation of cortical microtubules in vivo and in vitro. Our work uncovers a differentiation-specific rearrangement of the microtubule cytoskeleton in epidermis, and defines an essential role for DP in the process.

188 citations


Cited by
More filters
Journal ArticleDOI
21 Feb 2003-Cell
TL;DR: A core set of proteins including actin, Arp2/3 complex, profilin, capping protein, and ADF/cofilin can reconstitute the process in vitro, and mathematical models of the constituent reactions predict the rate of motion.

3,793 citations

Journal ArticleDOI
TL;DR: The extracellular matrix (ECM), a complex network of macromolecules with distinctive physical, biochemical, and biomechanical properties, is commonly deregulated and becomes disorganized in diseases such as cancer.
Abstract: The local microenvironment, or niche, of a cancer cell plays important roles in cancer development. A major component of the niche is the extracellular matrix (ECM), a complex network of macromolecules with distinctive physical, biochemical, and biomechanical properties. Although tightly controlled during embryonic development and organ homeostasis, the ECM is commonly deregulated and becomes disorganized in diseases such as cancer. Abnormal ECM affects cancer progression by directly promoting cellular transformation and metastasis. Importantly, however, ECM anomalies also deregulate behavior of stromal cells, facilitate tumor-associated angiogenesis and inflammation, and thus lead to generation of a tumorigenic microenvironment. Understanding how ECM composition and topography are maintained and how their deregulation influences cancer progression may help develop new therapeutic interventions by targeting the tumor niche.

2,353 citations

Journal ArticleDOI
26 Aug 2011-Science
TL;DR: In this article, the authors analyzed whole-exome sequencing data from 74 tumor-normal pairs and found that at least 30% of cases harbored mutations in genes that regulate squamous differentiation (for example, NOTCH1, IRF6, and TP63), implicating its dysregulation as a major driver of HNSCC carcinogenesis.
Abstract: Head and neck squamous cell carcinoma (HNSCC) is a common, morbid, and frequently lethal malignancy. To uncover its mutational spectrum, we analyzed whole-exome sequencing data from 74 tumor-normal pairs. The majority exhibited a mutational profile consistent with tobacco exposure; human papillomavirus was detectable by sequencing DNA from infected tumors. In addition to identifying previously known HNSCC genes (TP53, CDKN2A, PTEN, PIK3CA, and HRAS), our analysis revealed many genes not previously implicated in this malignancy. At least 30% of cases harbored mutations in genes that regulate squamous differentiation (for example, NOTCH1, IRF6, and TP63), implicating its dysregulation as a major driver of HNSCC carcinogenesis. More generally, the results indicate the ability of large-scale sequencing to reveal fundamental tumorigenic mechanisms.

2,245 citations

Journal ArticleDOI
TL;DR: The molecular determinants of Listeria virulence and their mechanism of action are described and the current knowledge on the pathophysiology of listeriosis and the cell biology and host cell responses to Listersia infection is summarized.
Abstract: The gram-positive bacterium Listeria monocytogenes is the causative agent of listeriosis, a highly fatal opportunistic foodborne infection. Pregnant women, neonates, the elderly, and debilitated or immunocompromised patients in general are predominantly affected, although the disease can also develop in normal individuals. Clinical manifestations of invasive listeriosis are usually severe and include abortion, sepsis, and meningoencephalitis. Listeriosis can also manifest as a febrile gastroenteritis syndrome. In addition to humans, L. monocytogenes affects many vertebrate species, including birds. Listeria ivanovii, a second pathogenic species of the genus, is specific for ruminants. Our current view of the pathophysiology of listeriosis derives largely from studies with the mouse infection model. Pathogenic listeriae enter the host primarily through the intestine. The liver is thought to be their first target organ after intestinal translocation. In the liver, listeriae actively multiply until the infection is controlled by a cell-mediated immune response. This initial, subclinical step of listeriosis is thought to be common due to the frequent presence of pathogenic L. monocytogenes in food. In normal indivuals, the continual exposure to listerial antigens probably contributes to the maintenance of anti-Listeria memory T cells. However, in debilitated and immunocompromised patients, the unrestricted proliferation of listeriae in the liver may result in prolonged low-level bacteremia, leading to invasion of the preferred secondary target organs (the brain and the gravid uterus) and to overt clinical disease. L. monocytogenes and L. ivanovii are facultative intracellular parasites able to survive in macrophages and to invade a variety of normally nonphagocytic cells, such as epithelial cells, hepatocytes, and endothelial cells. In all these cell types, pathogenic listeriae go through an intracellular life cycle involving early escape from the phagocytic vacuole, rapid intracytoplasmic multiplication, bacterially induced actin-based motility, and direct spread to neighboring cells, in which they reinitiate the cycle. In this way, listeriae disseminate in host tissues sheltered from the humoral arm of the immune system. Over the last 15 years, a number of virulence factors involved in key steps of this intracellular life cycle have been identified. This review describes in detail the molecular determinants of Listeria virulence and their mechanism of action and summarizes the current knowledge on the pathophysiology of listeriosis and the cell biology and host cell responses to Listeria infection. This article provides an updated perspective of the development of our understanding of Listeria pathogenesis from the first molecular genetic analyses of virulence mechanisms reported in 1985 until the start of the genomic era of Listeria research.

2,139 citations

Journal ArticleDOI
TL;DR: The main focus of this review will be Rho, Rac and Cdc42, the three best characterized mammalian Rho GTPases, though the genetic analysis of RhoGTPases in lower eukaryotes is making increasingly important contributions to this field.
Abstract: Rho GTPases are molecular switches that regulate many essential cellular processes, including actin dynamics, gene transcription, cell-cycle progression and cell adhesion. About 30 potential effector proteins have been identified that interact with members of the Rho family, but it is still unclear which of these are responsible for the diverse biological effects of Rho GTPases. This review will discuss how Rho GTPases physically interact with, and regulate the activity of, multiple effector proteins and how specific effector proteins contribute to cellular responses. To date most progress has been made in the cytoskeleton field, and several biochemical links have now been established between GTPases and the assembly of filamentous actin. The main focus of this review will be Rho, Rac and Cdc42, the three best characterized mammalian Rho GTPases, though the genetic analysis of Rho GTPases in lower eukaryotes is making increasingly important contributions to this field.

2,056 citations