scispace - formally typeset
Search or ask a question
Author

Teruo Ono

Bio: Teruo Ono is an academic researcher from Kyoto University. The author has contributed to research in topics: Magnetic domain & Magnetization. The author has an hindex of 56, co-authored 480 publications receiving 15347 citations. Previous affiliations of Teruo Ono include Osaka University & Keio University.


Papers
More filters
Journal ArticleDOI
TL;DR: A review of the most prominent spintronic effects described based on theoretical and experimental analysis of antiferromagnetic materials can be found in this article, where the authors discuss some of the remaining bottlenecks and suggest possible avenues for future research.
Abstract: Antiferromagnetic materials could represent the future of spintronic applications thanks to the numerous interesting features they combine: they are robust against perturbation due to magnetic fields, produce no stray fields, display ultrafast dynamics and are capable of generating large magneto-transport effects Intense research efforts over the past decade have been invested in unraveling spin transport properties in antiferromagnetic materials Whether spin transport can be used to drive the antiferromagnetic order and how subsequent variations can be detected are some of the thrilling challenges currently being addressed Antiferromagnetic spintronics started out with studies on spin transfer, and has undergone a definite revival in the last few years with the publication of pioneering articles on the use of spin-orbit interactions in antiferromagnets This paradigm shift offers possibilities for radically new concepts for spin manipulation in electronics Central to these endeavors are the need for predictive models, relevant disruptive materials and new experimental designs This paper reviews the most prominent spintronic effects described based on theoretical and experimental analysis of antiferromagnetic materials It also details some of the remaining bottlenecks and suggests possible avenues for future research

1,442 citations

Journal ArticleDOI
11 Aug 2000-Science
TL;DR: Experimental evidence for a spot of perpendicular magnetization at the center of the vortex is provided by magnetic force microscopy imaging of circular dots of permalloy (Ni(80)Fe(20)) 0.3 to 1 micrometer in diameter and 50 nanometers thick.
Abstract: Spin structures of nanoscale magnetic dots are the subject of increasing scientific effort, as the confinement of spins imposed by the geometrical restrictions makes these structures comparable to some internal characteristic length scales of the magnet. For a vortex (a ferromagnetic dot with a curling magnetic structure), a spot of perpendicular magnetization has been theoretically predicted to exist at the center of the vortex. Experimental evidence for this magnetization spot is provided by magnetic force microscopy imaging of circular dots of permalloy (Ni 80 Fe 20 ) 0.3 to 1 micrometer in diameter and 50 nanometers thick.

1,271 citations

Journal ArticleDOI
TL;DR: Direct observation of current-driven magnetic domain wall (DW) displacement by using a well-defined single DW in a microfabricated magnetic wire with submicron width is reported.
Abstract: We report direct observation of current-driven magnetic domain wall (DW) displacement by using a well-defined single DW in a microfabricated magnetic wire with submicron width. Magnetic force microscopy visualizes that a single DW introduced in a wire is displaced back and forth by positive and negative pulsed current, respectively. The direct observation gives quantitative information on the DW displacement as a function of the intensity and the duration of the pulsed current. The result is discussed in terms of the spin-transfer mechanism.

909 citations

Journal ArticleDOI
TL;DR: Efficient switching of the vortex core without magnetic-field application is achieved owing to resonance, which opens up the potentiality of a simple magnetic disk as a building block for spintronic devices such as a memory cell where the bit data is stored as the direction of the nanometre-scale core magnetization.
Abstract: A magnetic vortex is a curling magnetic structure realized in a ferromagnetic disk, which is a promising candidate for a memory cell for future non-volatile data-storage devices. Thus, an understanding of the stability and dynamical behaviour of the magnetic vortex is a major requirement for developing magnetic data-storage technology. Since the publication of experimental proof for the existence of a nanometre-scale core with out-of-plane magnetization in a magnetic vortex, the dynamics of vortices have been investigated intensively. However, a way to electrically control the core magnetization, which is a key for constructing a vortex-core memory, has been lacking. Here, we demonstrate the electrical switching of the core magnetization by using the current-driven resonant dynamics of the vortex; the core switching is triggered by a strong dynamic field that is produced locally by a rotational core motion at a high speed of several hundred metres per second. Efficient switching of the vortex core without magnetic-field application is achieved owing to resonance. This opens up the potentiality of a simple magnetic disk as a building block for spintronic devices such as a memory cell where the bit data is stored as the direction of the nanometre-scale core magnetization.

477 citations

Journal ArticleDOI
TL;DR: The room-temperature electrical control of the ferromagnetic phase transition in cobalt, one of the most representative transition-metal ferromagnets, is demonstrated at room temperature.
Abstract: Electrical control of magnetic properties is crucial for device applications in the field of spintronics. Although the magnetic coercivity or anisotropy has been successfully controlled electrically in metals as well as in semiconductors, the electrical control of Curie temperature has been realized only in semiconductors at low temperature. Here, we demonstrate the room-temperature electrical control of the ferromagnetic phase transition in cobalt, one of the most representative transition-metal ferromagnets. Solid-state field effect devices consisting of a ultrathin cobalt film covered by a dielectric layer and a gate electrode were fabricated. We prove that the Curie temperature of cobalt can be changed by up to 12 K by applying a gate electric field of about ±2 MV cm(-1). The two-dimensionality of the cobalt film may be relevant to our observations. The demonstrated electric field effect in the ferromagnetic metal at room temperature is a significant step towards realizing future low-power magnetic applications.

405 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors demonstrate phonon properties with fundamental equations and show examples how the phonon calculations are applied in materials science, and demonstrate the importance of first principles phonon calculation in dynamical behaviors and thermal properties.

6,508 citations

Journal ArticleDOI
11 Apr 2008-Science
TL;DR: The racetrack memory described in this review comprises an array of magnetic nanowires arranged horizontally or vertically on a silicon chip and is an example of the move toward innately three-dimensional microelectronic devices.
Abstract: Recent developments in the controlled movement of domain walls in magnetic nanowires by short pulses of spin-polarized current give promise of a nonvolatile memory device with the high performance and reliability of conventional solid-state memory but at the low cost of conventional magnetic disk drive storage. The racetrack memory described in this review comprises an array of magnetic nanowires arranged horizontally or vertically on a silicon chip. Individual spintronic reading and writing nanodevices are used to modify or read a train of ∼10 to 100 domain walls, which store a series of data bits in each nanowire. This racetrack memory is an example of the move toward innately three-dimensional microelectronic devices.

4,052 citations

Posted Content
TL;DR: In this article, the authors demonstrate phonon properties with fundamental equations and show examples how the phonon calculations are applied in materials science, and demonstrate the importance of first principles phonon calculation in dynamical behaviors and thermal properties.
Abstract: Phonon plays essential roles in dynamical behaviors and thermal properties, which are central topics in fundamental issues of materials science. The importance of first principles phonon calculations cannot be overly emphasized. Phonopy is an open source code for such calculations launched by the present authors, which has been world-widely used. Here we demonstrate phonon properties with fundamental equations and show examples how the phonon calculations are applied in materials science.

2,993 citations

01 Sep 1955
TL;DR: In this paper, the authors restrict their attention to the ferrites and a few other closely related materials, which are more closely related to anti-ferromagnetic substances than they are to ferromagnetics in which the magnetization results from the parallel alignment of all the magnetic moments present.
Abstract: In this chapter, we will restrict our attention to the ferrites and a few other closely related materials. The great interest in ferrites stems from their unique combination of a spontaneous magnetization and a high electrical resistivity. The observed magnetization results from the difference in the magnetizations of two non-equivalent sub-lattices of the magnetic ions in the crystal structure. Materials of this type should strictly be designated as “ferrimagnetic” and in some respects are more closely related to anti-ferromagnetic substances than they are to ferromagnetics in which the magnetization results from the parallel alignment of all the magnetic moments present. We shall not adhere to this special nomenclature except to emphasize effects, which are due to the existence of the sub-lattices.

2,659 citations

Journal ArticleDOI
TL;DR: The authors are starting to see a new paradigm where magnetization dynamics and charge currents act on each other in nanostructured artificial materials, allowing faster, low-energy operations: spin electronics is on its way.
Abstract: Electrons have a charge and a spin, but until recently these were considered separately. In classical electronics, charges are moved by electric fields to transmit information and are stored in a capacitor to save it. In magnetic recording, magnetic fields have been used to read or write the information stored on the magnetization, which 'measures' the local orientation of spins in ferromagnets. The picture started to change in 1988, when the discovery of giant magnetoresistance opened the way to efficient control of charge transport through magnetization. The recent expansion of hard-disk recording owes much to this development. We are starting to see a new paradigm where magnetization dynamics and charge currents act on each other in nanostructured artificial materials. Ultimately, 'spin currents' could even replace charge currents for the transfer and treatment of information, allowing faster, low-energy operations: spin electronics is on its way.

2,191 citations