scispace - formally typeset
Search or ask a question
Author

Tess A. Stanly

Bio: Tess A. Stanly is an academic researcher from University of York. The author has contributed to research in topics: Beta-defensin 2 & Receptor clustering. The author has an hindex of 6, co-authored 9 publications receiving 215 citations. Previous affiliations of Tess A. Stanly include Newcastle University & University of Oxford.

Papers
More filters
Journal ArticleDOI
07 Feb 2020-Science
TL;DR: Atomic modeling and molecular dynamics simulations based on a detailed energetic analysis of the interactions involved in dimerization yielded a mechanistic blueprint for homodimeric class I cytokine receptor activation and its dysregulation by individual mutations.
Abstract: Homodimeric class I cytokine receptors are assumed to exist as preformed dimers that are activated by ligand-induced conformational changes. We quantified the dimerization of three prototypic class I cytokine receptors in the plasma membrane of living cells by single-molecule fluorescence microscopy. Spatial and spatiotemporal correlation of individual receptor subunits showed ligand-induced dimerization and revealed that the associated Janus kinase 2 (JAK2) dimerizes through its pseudokinase domain. Oncogenic receptor and hyperactive JAK2 mutants promoted ligand-independent dimerization, highlighting the formation of receptor dimers as the switch responsible for signal activation. Atomistic modeling and molecular dynamics simulations based on a detailed energetic analysis of the interactions involved in dimerization yielded a mechanistic blueprint for homodimeric class I cytokine receptor activation and its dysregulation by individual mutations.

99 citations

Journal ArticleDOI
TL;DR: Different fluorescent lipid analogs are compared for their performance in cellular assays and their applicability in fluorescence correlation spectroscopy (FCS)-based and super-resolution stimulated emission depletion-FCS-based measurements of membrane diffusion dynamics.

73 citations

Journal ArticleDOI
TL;DR: This study demonstrates profibrotic properties of circulating monocytes from patients with SSc and a key role for TLR signalling, particularly TLR8, in TIMP-1 secretion and matrix remodelling.
Abstract: Objectives To investigate whether monocytes contribute to matrix deposition in systemic sclerosis (SSc) by production of tissue-inhibitor of metalloproteinase-1 (TIMP-1). Methods Matrix metalloproteinase-1 (MMP-1) and TIMP-1 expression and secretion were measured by qRT-PCR and ELISA in circulating monocytes from patients with SSc, patients with rheumatoid arthritis (RA) and healthy controls (HC) and in healthy monocytes cultured in the presence of SSc or HC serum samples. Production of TIMP-1 was determined in response to a panel of Toll-like receptor (TLR) agonists and MyD88 inhibitory peptide. The functional effect of conditioned media from SSc and HC serum samples or TLR8-stimulated monocytes was studied in an MMP-1 activity assay. Results TIMP-1 production by monocytes was upregulated in patients with SSc compared with patients with RA and HC. Incubation of HC monocytes with SSc serum samples resulted in functionally active TIMP-1 production. However, pretreatment with MyD88 inhibitor, but not control peptide, decreased TIMP-1 secretion. TIMP-1 production was significantly stronger when SSc and HC monocytes were stimulated with TLR8 (ssRNA) agonist, but the response was more pronounced in SSc monocytes. TIMP-1 production after TLR stimulation was also strongly reduced in the presence of MyD88 inhibitory peptide or in the monocytes isolated from a patient with a genetic TLR signalling defect. MMP-1 activity was significantly inhibited in media from serum samples or TLR8-stimulated monocytes indicative of functional TIMP activity. Conclusions This study demonstrates profibrotic properties of circulating monocytes from patients with SSc and a key role for TLR signalling, particularly TLR8, in TIMP-1 secretion and matrix remodelling.

59 citations

Journal ArticleDOI
TL;DR: This study highlights how inadequate fixation can lead to the formation of artefactual clustering of receptors in lymphatic endothelial cells, and provides fixation conditions for studying membrane receptor organisation.
Abstract: Receptor clustering is known to trigger signalling events that contribute to critical changes in cellular functions. Faithful imaging of such clusters by means of fluorescence microscopy relies on the application of adequate cell fixation methods prior to immunolabelling in order to avoid artefactual redistribution by the antibodies themselves. Previous work has highlighted the inadequacy of fixation with paraformaldehyde (PFA) alone for efficient immobilisation of membrane-associated molecules, and the advantages of fixation with PFA in combination with glutaraldehyde (GA). Using fluorescence microscopy, we here highlight how inadequate fixation can lead to the formation of artefactual clustering of receptors in lymphatic endothelial cells, focussing on the transmembrane hyaluronan receptors LYVE-1 and CD44, and the homotypic adhesion molecule CD31, each of which displays their native diffuse surface distribution pattern only when visualised with the right fixation techniques, i.e. PFA/GA in combination. Fluorescence recovery after photobleaching (FRAP) confirms that the artefactual receptor clusters are indeed introduced by residual mobility. In contrast, we observed full immobilisation of membrane proteins in cells that were fixed and then subsequently permeabilised, irrespective of whether the fixative was PFA or PFA/GA in combination. Our study underlines the importance of choosing appropriate sample preparation protocols for preserving authentic receptor organisation in advanced fluorescence microscopy.

55 citations

Journal ArticleDOI
TL;DR: An actin-mediated constraint on LYVE-1 clustering in lymphatic endothelium that tunes the receptor for selective engagement with hyaluronan assemblages in the glycocalyx that are large enough to cross-bridge the corral-bound LYve-1 molecules and thereby facilitate leukocyte adhesion and transmigration is pointed to.

13 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The membrane raft hypothesis formalized a physicochemical principle for a subtype of lateral membrane heterogeneity, in which the preferential associations between cholesterol and saturated lipids drive the formation of relatively packed membrane domains that selectively recruit certain lipids and proteins.
Abstract: Cellular plasma membranes are laterally heterogeneous, featuring a variety of distinct subcompartments that differ in their biophysical properties and composition. A large number of studies have focused on understanding the basis for this heterogeneity and its physiological relevance. The membrane raft hypothesis formalized a physicochemical principle for a subtype of such lateral membrane heterogeneity, in which the preferential associations between cholesterol and saturated lipids drive the formation of relatively packed (or ordered) membrane domains that selectively recruit certain lipids and proteins. Recent studies have yielded new insights into this mechanism and its relevance in vivo, owing primarily to the development of improved biochemical and biophysical technologies.

1,349 citations

Journal ArticleDOI
TL;DR: An overview of current super-resolution microscopy techniques is given and guidance on how best to use them to foster biological discovery is provided.
Abstract: Super-resolution microscopy (SRM) bypasses the diffraction limit, a physical barrier that restricts the optical resolution to roughly 250 nm and was previously thought to be impenetrable. SRM techniques allow the visualization of subcellular organization with unprecedented detail, but also confront biologists with the challenge of selecting the best-suited approach for their particular research question. Here, we provide guidance on how to use SRM techniques advantageously for investigating cellular structures and dynamics to promote new discoveries.

665 citations

01 Jan 2007
TL;DR: In this article, the authors applied stabilized goat anti-mouse HRP-conjugated antibodies (product No. 1858413, Pierce) as secondary antibody on immunoblots.
Abstract: ) was used. As secondary antibody on immunoblots we applied stabilized goat anti-mouse HRP-conjugated antibodies (product No. 1858413, Pierce). For immunofluorescence sheep-anti-mouse immunoglobulins G (catalogue No. 515-005-003, Dianova) were labeled with the fluorescent dye Atto532 or Atto647N (provided by K. H. Drexhage, Dept. of Chemistry, University of Siegen, Germany).

395 citations

Journal ArticleDOI
TL;DR: Recent findings on TLR pathway regulation in various autoimmune diseases are summarized, suggesting that TLR-associated gene expression profile analysis together with single nucleotide polymorphism (SNP) assessment could be important to explain the pathomechanism driving autoimmune diseases.
Abstract: Autoimmune diseases are a family of chronic systemic inflammatory disorders, characterized by the dysregulation of the immune system which finally results in the break of tolerance to self-antigen. Several studies suggest that Toll-like receptors (TLRs) play an essential role in the pathogenesis of autoimmune diseases. TLRs belong to the family of pattern recognition receptors (PRRs) that recognize a wide range of pathogen-associated molecular patterns (PAMPs). TLRs are type I transmembrane proteins and located on various cellular membranes. Two main groups have been classified based on their location; the extracelluar group referred to the ones located on the plasma membrane while the intracellular group all located in endosomal compartments responsible for the recognition of nucleic acids. They are released by the host cells and trigger various intracellular pathways which results in the production of proinflammatory cytokines, chemokines, as well as the expression of co-stimulatory molecules to protect against invading microorganisms. In particular, TLR pathway-associated proteins, such as IRAK, TRAF, and SOCS, are often dysregulated in this group of diseases. TLR-associated gene expression profile analysis together with single nucleotide polymorphism (SNP) assessment could be important to explain the pathomechanism driving autoimmune diseases. In this review, we summarize recent findings on TLR pathway regulation in various autoimmune diseases, including Sjogren’s syndrome (SS), systemic lupus erythematosus (SLE), multiple sclerosis (MS), rheumatoid arthritis (RA), systemic sclerosis (SSc), and psoriasis.

202 citations

Journal ArticleDOI
TL;DR: Elucidating the relevance of Mo and Mϕ in autoimmune diseases and the associated mechanisms could lead to the identification of more effective therapeutic strategies in the future.
Abstract: Monocytes (Mo) and macrophages (Mϕ) are key components of the innate immune system and are involved in regulation of the initiation, development, and resolution of many inflammatory disorders. In addition, these cells also play important immunoregulatory and tissue-repairing roles to decrease immune reactions and promote tissue regeneration. Several lines of evidence have suggested a causal link between the presence or activation of these cells and the development of autoimmune diseases. In addition, Mo or Mϕ infiltration in diseased tissues is a hallmark of several autoimmune diseases. However, the detailed contributions of these cells, whether they actually initiate disease or perpetuate disease progression, and whether their phenotype and functional alteration are merely epiphenomena are still unclear in many autoimmune diseases. Additionally, little is known about their heterogeneous populations in different autoimmune diseases. Elucidating the relevance of Mo and Mϕ in autoimmune diseases and the associated mechanisms could lead to the identification of more effective therapeutic strategies in the future.

178 citations