scispace - formally typeset
Search or ask a question
Author

Tetsu Tanaka

Other affiliations: NTT DoCoMo, Tokyo Medical and Dental University, Fujitsu  ...read more
Bio: Tetsu Tanaka is an academic researcher from Tohoku University. The author has contributed to research in topics: Wafer & Chip. The author has an hindex of 38, co-authored 406 publications receiving 10375 citations. Previous affiliations of Tetsu Tanaka include NTT DoCoMo & Tokyo Medical and Dental University.
Topics: Wafer, Chip, Wafer bonding, Interposer, Flip chip


Papers
More filters
01 Jan 2009
TL;DR: In this paper, a polycrystalline silicon (poly-Si) TSV technology and tungsten (W)/poly poly-Si TSV for 3D integration was developed.
Abstract: High density through silicon via (TSV) is a key in fabricating three-dimensional (3-D) large-scale integration (LSI). We have developed polycrystalline silicon (poly-Si) TSV technology and tungsten (W)/poly-Si TSV technology for 3-D integration. In the poly-Si TSV formation, low-pressure chem- ical vapor deposition poly-Si heavily doped with phosphorus was conformally deposited into the narrow and deep trench formed in a Si substrate after the surface of Si trench was thermally oxidized. In the W/poly-Si TSV formation, tungsten was deposited into the Si trench by atomic layer deposition method after the poly-Si deposition, where poly-Si was used as a liner layer for W deposition. The 3-D microprocessor test chip, 3-D memory test chip, 3-D image sensor chip, and 3-D artificial retina chip were successfully fabricated by using poly-Si TSV.

261 citations

Journal ArticleDOI
TL;DR: In this article, a 3D shared-memory test chip with three-stacked layers was fabricated by bonding the wafers with vertical buried interconnections after thinning.
Abstract: A three-dimensional (3-D) integration technology has been developed for the fabrication of a new 3-D shared-memory test chip. This 3-D technology is based on the wafer bonding and thinning method. Five key technologies for 3-D integration were developed, namely, the formation of vertical buried interconnections, metal microbump formations, stacked wafer thinning, wafer alignment, and wafer bonding. Deep trenches having a diameter of 2 mum and a depth of approximately 50 mum were formed in the silicon substrate using inductively coupled plasma etching to form vertical buried interconnections. These trenches were oxidized and filled with n+ polycrystalline silicon or tungsten. The 3-D devices and 3-D shared-memory test chips with three-stacked layers were fabricated by bonding the wafers with vertical buried interconnections after thinning. No characteristic degradation was observed in the fabricated 3-D devices. It was confirmed that fundamental memory operation and broadcast operation between the three memory layers could be successfully performed in the fabricated 3-D shared-memory test chip

230 citations

Journal ArticleDOI
TL;DR: In this article, experimental data, device simulation, and analytical modeling for device comparison are employed. But the comparison is limited to the case of MOSFETs with channel length of 0.1 /spl mu/m and below reported in industrial research.
Abstract: Metal-Oxide-Semiconductor Field Effect Transistor (MOSFET) has been the major device for integrated circuits over the past two decades. With technology advancement, there have been numerous MOSFET structures for channel length of 0.1 /spl mu/m and below reported in industrial research. A side-by-side comparison of these advanced device structures can provide useful understanding in device physics and the design tradeoffs among MOSFET's parameters. In this work we employ experimental data, device simulation, and analytical modeling for device comparison. The devices were developed at several different research laboratories. Guided by experimental data and simulations, analytical models for topics such as threshold voltage, short-channel effect, and saturation current for these different MOSFET structures are developed. These analytical models are then used for optimizing each device structure and comparing the devices under the same set of constraints for a fair comparison. The key design parameters are highlighted and the strength and weakness of each device structure in various performance categories are discussed.

216 citations

Journal ArticleDOI
TL;DR: DPC collections are evaluated as an optimal source of iPS cells, since they are easily obtained from extracted teeth and can be expanded under simple culture conditions, and determination of the HLA types of 107 DPC lines revealed 2 lines homozygous for all 3 HLA loci.
Abstract: Defined sets of transcriptional factors can reprogram human somatic cells to induced pluripotent stem (iPS) cells. However, many types of human cells are not easily accessible to minimally invasive procedures. Here we evaluated dental pulp cells (DPCs) as an optimal source of iPS cells, since they are easily obtained from extracted teeth and can be expanded under simple culture conditions. From all 6 DPC lines tested with the conventional 3 or 4 reprogramming factors, iPS cells were effectively established from 5 DPC lines. Furthermore, determination of the HLA types of 107 DPC lines revealed 2 lines homozygous for all 3 HLA loci and showed that if an iPS bank is established from these initial pools, the bank will cover approximately 20% of the Japanese population with a perfect match. Analysis of these data demonstrates the promising potential of DPC collections as a source of iPS cell banks for use in regenerative medicine.

202 citations

Journal ArticleDOI
E. Yoshida1, Tetsu Tanaka1
TL;DR: In this article, a capacitorless one-transistor (1T)-dynamic random access memory (DRAM) cell using gate-induced drain-leakage (GIDL) current for write operation was demonstrated.
Abstract: A capacitorless one-transistor (1T)-dynamic random-access memory (DRAM) cell using gate-induced drain-leakage (GIDL) current for write operation was demonstrated. Compared with the conventional write operation with impact-ionization (II) current, the write operation with GIDL current achieves power consumption that is lower by four orders of magnitude and a write speed within several nanoseconds. The capacitorless 1T DRAM is the most promising technology for high-performance embedded-DRAM large-scale integration.

197 citations


Cited by
More filters
Journal ArticleDOI
11 Jun 1998-Nature
TL;DR: The complete genome sequence of the best-characterized strain of Mycobacterium tuberculosis, H37Rv, has been determined and analysed in order to improve the understanding of the biology of this slow-growing pathogen and to help the conception of new prophylactic and therapeutic interventions.
Abstract: Countless millions of people have died from tuberculosis, a chronic infectious disease caused by the tubercle bacillus. The complete genome sequence of the best-characterized strain of Mycobacterium tuberculosis, H37Rv, has been determined and analysed in order to improve our understanding of the biology of this slow-growing pathogen and to help the conception of new prophylactic and therapeutic interventions. The genome comprises 4,411,529 base pairs, contains around 4,000 genes, and has a very high guanine + cytosine content that is reflected in the biased amino-acid content of the proteins. M. tuberculosis differs radically from other bacteria in that a very large portion of its coding capacity is devoted to the production of enzymes involved in lipogenesis and lipolysis, and to two new families of glycine-rich proteins with a repetitive structure that may represent a source of antigenic variation.

7,779 citations

Journal ArticleDOI
TL;DR: Antiinflammatory therapy targeting the interleukin‐1β innate immunity pathway with canakinumab at a dose of 150 mg every 3 months led to a significantly lower rate of recurrent cardiovascular events than placebo, independent of lipid‐level lowering.
Abstract: BackgroundExperimental and clinical data suggest that reducing inflammation without affecting lipid levels may reduce the risk of cardiovascular disease. Yet, the inflammatory hypothesis of atherothrombosis has remained unproved. MethodsWe conducted a randomized, double-blind trial of canakinumab, a therapeutic monoclonal antibody targeting interleukin-1β, involving 10,061 patients with previous myocardial infarction and a high-sensitivity C-reactive protein level of 2 mg or more per liter. The trial compared three doses of canakinumab (50 mg, 150 mg, and 300 mg, administered subcutaneously every 3 months) with placebo. The primary efficacy end point was nonfatal myocardial infarction, nonfatal stroke, or cardiovascular death. ResultsAt 48 months, the median reduction from baseline in the high-sensitivity C-reactive protein level was 26 percentage points greater in the group that received the 50-mg dose of canakinumab, 37 percentage points greater in the 150-mg group, and 41 percentage points greater in t...

5,660 citations

Journal ArticleDOI
31 Aug 2000-Nature
TL;DR: It is proposed that the size and complexity of the P. aeruginosa genome reflect an evolutionary adaptation permitting it to thrive in diverse environments and resist the effects of a variety of antimicrobial substances.
Abstract: Pseudomonas aeruginosa is a ubiquitous environmental bacterium that is one of the top three causes of opportunistic human infections. A major factor in its prominence as a pathogen is its intrinsic resistance to antibiotics and disinfectants. Here we report the complete sequence of P. aeruginosa strain PAO1. At 6.3 million base pairs, this is the largest bacterial genome sequenced, and the sequence provides insights into the basis of the versatility and intrinsic drug resistance of P. aeruginosa. Consistent with its larger genome size and environmental adaptability, P. aeruginosa contains the highest proportion of regulatory genes observed for a bacterial genome and a large number of genes involved in the catabolism, transport and efflux of organic compounds as well as four potential chemotaxis systems. We propose that the size and complexity of the P. aeruginosa genome reflect an evolutionary adaptation permitting it to thrive in diverse environments and resist the effects of a variety of antimicrobial substances.

4,220 citations