scispace - formally typeset
Search or ask a question
Author

Tetsuro Kusamoto

Bio: Tetsuro Kusamoto is an academic researcher from Graduate University for Advanced Studies. The author has contributed to research in topics: Radical & Luminescence. The author has an hindex of 22, co-authored 75 publications receiving 1622 citations. Previous affiliations of Tetsuro Kusamoto include University of Tokyo & National Presto Industries.


Papers
More filters
Journal ArticleDOI
TL;DR: This work provides a foothold for the development of the first organic-based two-dimensional topological insulator, which will require the precise control of the oxidation state in the single-layer nickel bisdithiolene complex nanosheet.
Abstract: A bulk material comprising stacked nanosheets of nickel bis(dithiolene) complexes is investigated. The average oxidation number is −3/4 for each complex unit in the as-prepared sample; oxidation or reduction respectively can change this to 0 or −1. Refined electrical conductivity measurement, involving a single microflake sample being subjected to the van der Pauw method under scanning electron microscopy control, reveals a conductivity of 1.6 × 102 S cm–1, which is remarkably high for a coordination polymeric material. Conductivity is also noted to modulate with the change of oxidation state. Theoretical calculation and photoelectron emission spectroscopy reveal the stacked nanosheets to have a metallic nature. This work provides a foothold for the development of the first organic-based two-dimensional topological insulator, which will require the precise control of the oxidation state in the single-layer nickel bisdithiolene complex nanosheet (cf. Liu, F. et al. Nano Lett. 2013, 13, 2842).

355 citations

Journal ArticleDOI
TL;DR: A luminescent open-shell organic radical with high chemical stability was synthesized and the pyridine moiety acts as a proton coordination site, thereby allowing for control of the electronic and optical properties of the radical by protonation and deprotonation.
Abstract: A luminescent open-shell organic radical with high chemical stability was synthesized. (3,5-Dichloro-4-pyridyl)bis(2,4,6-trichlorophenyl)methyl radical (PyBTM) was photoluminescent under various conditions. Fluorescence quantum yields of 0.03, 0.26, and 0.81 (the highest value reported for a stable organic radical) were obtained in chloroform, in poly(methyl methacrylate) film at room temperature, and in an EPA matrix (diethyl ether:isopentane:ethanol) at 77 K, respectively. The photostability of PyBTM is up to 115 times higher than that of the tris(2,4,6-trichlorophenyl)methyl radical, a previously reported luminescent radical. The pyridine moiety of PyBTM acts as a proton coordination site, thereby allowing for control of the electronic and optical properties of the radical by protonation and deprotonation.

144 citations

Journal ArticleDOI
TL;DR: A variety of dibenzosiloles and -germoles as well as dithiophenosilole (VII) are prepared, better tolerating the functional groups as the methods applied so far.
Abstract: A variety of dibenzosiloles and -germoles as well as dithiophenosilole (VII) are prepared, better tolerating the functional groups as the methods applied so far.

104 citations

Journal ArticleDOI
TL;DR: Precisely tuned functional coordination nanosheet exhibits competent catalytic activity for HER, accompany with drastic electronic property switching by redox treatment.
Abstract: A π-conjugated coordination nanosheet comprising bis(aminothiolato)nickel (NiAT) moieties was synthesized by the reaction of Ni(acac)2 with 1,3,5-triaminobenzene-2,4,6-trithiol at liquid-liquid and gas-liquid interfaces. The sheet thickness could be controlled down to a single layer (0.6 nm). Selected area electron diffraction and grazing incidence X-ray diffraction analyses indicated the formation of a flat crystalline sheet with a kagome lattice stacked in a staggered alignment. NiAT was reversibly interconverted to a bis(iminothiolato)nickel (NiIT) nanosheet by the chemical 2H+-2e- reaction, which was accompanied by a drastic change in electrical conductivity from 3 × 10-6 to 1 × 10-1 S cm-1. This change in conductivity was explained by the difference in band structures between NiAT and NiIT. NiAT acted as an efficient electrocatalyst for the hydrogen evolution reaction, showing strong acid durability and an onset overpotential of -0.15 V.

103 citations

Journal ArticleDOI
TL;DR: The synthesis of palladium bis(dithiolene) complex nanosheets (PdDt) possessing a kagome-type lattice structure was performed via interfacial reaction between metal salt in aqueous phase and dithiolato ligand in organic phase.
Abstract: The synthesis of palladium bis(dithiolene) complex nanosheets (PdDt) possessing a kagome-type lattice structure was performed via interfacial reaction between metal salt in aqueous phase and dithiolato ligand in organic phase. The PdDt nanosheets were characterised by AFM, STM, TEM revealing flat and sheet-like morphology; IR, UV spectroscopy show the corresponding coordination connectivity between metal and ligand, followed by powder X-ray diffraction and SAED, which determined nanosheets to be structurally similar to previously reported nickel bis(dithiolene) complex nanosheets NiDt.

100 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: The specific advantages brought up by a design based on the use of the halogen bond will be demonstrated in quite different fields spanning from material sciences to biomolecular recognition and drug design.
Abstract: The halogen bond occurs when there is evidence of a net attractive interaction between an electrophilic region associated with a halogen atom in a molecular entity and a nucleophilic region in another, or the same, molecular entity. In this fairly extensive review, after a brief history of the interaction, we will provide the reader with a snapshot of where the research on the halogen bond is now, and, perhaps, where it is going. The specific advantages brought up by a design based on the use of the halogen bond will be demonstrated in quite different fields spanning from material sciences to biomolecular recognition and drug design.

2,582 citations

Journal ArticleDOI
TL;DR: This work reviews the synthetic and electronic design strategies that have been employed thus far for producing frameworks with permanent porosity and long-range charge transport properties and selected applications for this subclass of MOFs.
Abstract: Owing to their outstanding structural, chemical, and functional diversity, metal-organic frameworks (MOFs) have attracted considerable attention over the last two decades in a variety of energy-related applications. Notably missing among these, until recently, were applications that required good charge transport coexisting with porosity and high surface area. Although most MOFs are electrical insulators, several materials in this class have recently demonstrated excellent electrical conductivity and high charge mobility. Herein we review the synthetic and electronic design strategies that have been employed thus far for producing frameworks with permanent porosity and long-range charge transport properties. In addition, key experiments that have been employed to demonstrate electrical transport, as well as selected applications for this subclass of MOFs, will be discussed.

1,279 citations

Journal ArticleDOI
TL;DR: The bright potential of MOF materials as emerging multifunctional materials is highlighted in some of the most important applications for gas storage and separation, optical, electric and magnetic materials, chemical sensing, catalysis, and biomedicine.
Abstract: Metal-organic frameworks (MOFs), also known as coordination polymers, represent an interesting type of solid crystalline materials that can be straightforwardly self-assembled through the coordination of metal ions/clusters with organic linkers. Owing to the modular nature and mild conditions of MOF synthesis, the porosities of MOF materials can be systematically tuned by judicious selection of molecular building blocks, and a variety of functional sites/groups can be introduced into metal ions/clusters, organic linkers, or pore spaces through pre-designing or post-synthetic approaches. These unique advantages enable MOFs to be used as a highly versatile and tunable platform for exploring multifunctional MOF materials. Here, the bright potential of MOF materials as emerging multifunctional materials is highlighted in some of the most important applications for gas storage and separation, optical, electric and magnetic materials, chemical sensing, catalysis, and biomedicine.

1,120 citations

Patent
29 Mar 2010
TL;DR: In this article, the present invention relates to novel organic electroluminescent compounds exhibiting high luminous efficiency, and organic devices comprising the same, which are represented by Chemical Formula (1):
Abstract: The present invention relates to novel organic electroluminescent compounds exhibiting high luminous efficiency, and organic electroluminescent devices comprising the same. The organic electroluminescent compounds according to the invention are represented by Chemical Formula (1):

962 citations