scispace - formally typeset
Search or ask a question
Author

Tetsuro Shingu

Bio: Tetsuro Shingu is an academic researcher from Kobe Gakuin University. The author has contributed to research in topics: Hydrolyzable Tannin & Nuclear magnetic resonance spectroscopy. The author has an hindex of 29, co-authored 137 publications receiving 2561 citations. Previous affiliations of Tetsuro Shingu include Osaka University of Pharmaceutical Sciences & Kyoto University.


Papers
More filters
Journal ArticleDOI
TL;DR: Seven new fumiquinazolines (FQs) A–G have been isolated from a strain of Aspergillus fumigatus originally separated from the marine fish Pseudolabrus japonicus and exhibited moderate cytotoxicity against cultured P388 cells.
Abstract: Seven new fumiquinazolines (FQs) A–G have been isolated from a strain of Aspergillus fumigatus originally separated from the marine fish Pseudolabrus japonicus, and their stereostructures and conformations have been established on the basis of spectral and X-ray analyses and some chemical transformations. All the compounds exhibited moderate cytotoxicity against cultured P388 cells.

124 citations

Journal ArticleDOI
TL;DR: Fumiquinazolines A, B and C, exhibiting moderate cytotoxicity, were isolated from the mycelium of a strain of Aspergillus fumigatus which existed in the gastrointestinal tract of the saltwater fish Pseudolabrus japonicus.

107 citations

Journal ArticleDOI
TL;DR: In this article, the surface layer of Poria cocos has been used for the extraction of lanostane triterpenes and four novel 3,4-seco-lanostane derivatives.

86 citations

Journal ArticleDOI
TL;DR: In this paper, a new cytotoxic epipolysulfanyldioxopiperazine dimers, leptosins K (4), K1 (5) and K2 (6), have been isolated from a strain of Leptosphaeria sp. originally isolated from the marine alga Sargassum tortile.

76 citations

Journal ArticleDOI
TL;DR: The surface layer of Poria cocos has yielded five new triterpenes; two of the lanostane type and three of the 3,4secolanostane Type as mentioned in this paper.

74 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This review covers the literature published in 2014 for marine natural products, with 1116 citations referring to compounds isolated from marine microorganisms and phytoplankton, green, brown and red algae, sponges, cnidarians, bryozoans, molluscs, tunicates, echinoderms, mangroves and other intertidal plants and microorganisms.

4,649 citations

Journal ArticleDOI
TL;DR: Tannin toxicity for fungi, bacteria and yeasts is reviewed and compared to toxicity of related lower molecular weight phenols and the dependence of toxicity on tannin structure is examined.

2,129 citations

Journal ArticleDOI
TL;DR: This review covers the isolation, structure determination, synthesis and biological activity of quinoline, quinazoline and acridone alkaloids from plant, microbial and animal sources.

1,687 citations

Journal ArticleDOI
TL;DR: The preparation of urea by Wöhler constituted a landmark achievement in organic chemistry, and it laid the ground for the early days of target-oriented organic synthesis, a task deemed inconceivable by early practitioners.
Abstract: The preparation of urea by Wöhler constituted a landmark achievement in organic chemistry, and it laid the ground for the early days of target-oriented organic synthesis.1 Since then, significant progress has been achieved in this discipline; many powerful single bond forming reactions and asymmetric variants have been developed. These discoveries have paved the way for the stereoselective assembly of complex organic molecules, a task deemed inconceivable by early practitioners. A great many strategies were invented by chemists in order to facilitate the synthesis of complex natural products.2 One avenue in emulating nature’s efficiency would * To whom correspondence should be addressed. E-mail: dennis.hall@ ualberta.ca. † Novartis Institute for Biomedical Research. ‡ Department of Chemistry, University of Alberta. Chem. Rev. 2009, 109, 4439–4486 4439

1,374 citations

Journal ArticleDOI
TL;DR: Gerhard Bringmann's research interests focus on the field of analytical, synthetic, and computational natural product chemistry, i.e., on axially chiral biaryls, which is characterized by a broad structural diversity.
Abstract: Intellectual curiosity has always been one of the major driving forces leading to new advances in chemistry. At the onset of the 20th century, the fact that biaryls could be optically active even if lacking asymmetrically substituted carbon atoms arose interest, hinting at a novel type of stereomerism. It took quite a while (and some bizarre explanations)1 until in 1922 Christie and Kenner2 first correctly recognized that the phenomenon was the consequence of a hindered rotation about the aryl-aryl single bondshence termed atropisomerism by Kuhn. Still, no particular attention was initially paid to this class of stereoisomers until enantiomerically pure biaryls, such as BINAP (1),3 were found to be excellent ligands in asymmetric catalysis and until the chiral biaryl unit was recognized as the decisive structural element of many natural products (Figure 1).4,5 With the modern screening techniques and the bioassayguided search for novel compounds, the number of isolated axially chiral natural biaryls is steadily increasing.4 This class of secondary metabolites is characterized by a broad structural diversity, reaching from relatively simple molecules like the C2-symmetric biphenyl 2, which solely contains the element of axial chirality,6 to more complex compounds, like, e.g., the dimeric naphthylisoquinoline alkaloids michellamine A [(P,P)-3] and its axial epimer (i.e., its atropodiastereomer), michellamine B [(P,M)-3],7,8 which possess even three biaryl axes, of which the two outer ones are stereogenic, while * To whom correspondence should be addressed. E-mail: bringmann@ chemie.uni-wuerzburg.de; breuning@chemie.uni-wuerzburg.de. † These authors contributed equally to this work. ‡ Present address: Institute of Organic Chemistry, RWTH Aachen, Landoltweg 1, 52074 Aachen, Germany. § Present address: Kekulé Institute of Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk Str. 1, 53121 Bonn, Germany. Gerhard Bringmann was born in 1951 and studied chemistry in Gie en and Münster, Germany. After his Ph.D. with Prof. B. Franck in 1978 and postdoctoral studies with Prof. Sir D. H. R. Barton in Gif-sur-Yvette (France), he passed his habilitation at the University of Münster in 1984. In 1986, he received offers for full professorships of Organic Chemistry at the Universities of Vienna and Würzburg, of which he accepted the latter in 1987. In 1998, he was offered the position of director at the Leibniz Institute of Plant Biochemistry in Halle, which he declined. His research interests focus on the field of analytical, synthetic, and computational natural product chemistry, i.e., on axially chiral biaryls. He received several prizes and awards, among them the Otto-Klung Award in chemistry (1988), the Prize for Good Teaching of the Free State of Bavaria (1999), the Adolf-Windaus Medal (2006), the Honorary Doctorate of the University of Kinshasa (2006), the Paul-J.-Scheuer Award (2007), and the Honorary Guest Professorship of Peking University (2008). Chem. Rev. 2011, 111, 563–639 563

936 citations