scispace - formally typeset
Search or ask a question
Author

Th. Zink

Bio: Th. Zink is an academic researcher. The author has contributed to research in topics: Modular design & Goppa code. The author has an hindex of 1, co-authored 1 publications receiving 505 citations.

Papers
More filters

Cited by
More filters
Journal ArticleDOI
TL;DR: An improved list decoding algorithm for decoding Reed-Solomon codes and alternant codes and algebraic-geometry codes is presented and a solution to a weighted curve-fitting problem is presented, which may be of use in soft-decision decoding algorithms for Reed- Solomon codes.
Abstract: Given an error-correcting code over strings of length n and an arbitrary input string also of length n, the list decoding problem is that of finding all codewords within a specified Hamming distance from the input string. We present an improved list decoding algorithm for decoding Reed-Solomon codes. The list decoding problem for Reed-Solomon codes reduces to the following "curve-fitting" problem over a field F: given n points ((x/sub i//spl middot/y/sub i/))/sub i=1//sup n/, x/sub i/, y/sub i//spl isin/F, and a degree parameter k and error parameter e, find all univariate polynomials p of degree at most k such that y/sub i/=p(x/sub i/) for all but at most e values of i/spl isin/(1,...,n). We give an algorithm that solves this problem for e 1/3, where the result yields the first asymptotic improvement in four decades. The algorithm generalizes to solve the list decoding problem for other algebraic codes, specifically alternant codes (a class of codes including BCH codes) and algebraic-geometry codes. In both cases, we obtain a list decoding algorithm that corrects up to n-/spl radic/(n(n-d')) errors, where n is the block length and d' is the designed distance of the code. The improvement for the case of algebraic-geometry codes extends the methods of Shokrollahi and Wasserman (see in Proc. 29th Annu. ACM Symp. Theory of Computing, p.241-48, 1998) and improves upon their bound for every choice of n and d'. We also present some other consequences of our algorithm including a solution to a weighted curve-fitting problem, which may be of use in soft-decision decoding algorithms for Reed-Solomon codes.

1,108 citations

Book
01 Jan 2002
TL;DR: This paper presents codes and algorithms for majority decoding based on the Fourier transform, as well as algorithms based on graphs, for linear block codes and beyond BCH codes.
Abstract: The need to transmit and store massive amounts of data reliably and without error is a vital part of modern communications systems. Error-correcting codes play a fundamental role in minimising data corruption caused by defects such as noise, interference, crosstalk and packet loss. This book provides an accessible introduction to the basic elements of algebraic codes, and discusses their use in a variety of applications. The author describes a range of important coding techniques, including Reed-Solomon codes, BCH codes, trellis codes, and turbocodes. Throughout the book, mathematical theory is illustrated by reference to many practical examples. The book was first published in 2003 and is aimed at graduate students of electrical and computer engineering, and at practising engineers whose work involves communications or signal processing.

687 citations

Proceedings ArticleDOI
08 Nov 1998
TL;DR: An improved list decoding algorithm for decoding Reed-Solomon codes and alternant codes and algebraic-geometric codes is presented, including a solution to a weighted curve fitting problem, which is of use in soft-decision decoding algorithms for Reed- Solomon codes.
Abstract: Given an error-correcting code over strings of length n and an arbitrary input string also of length n, the list decoding problem is that of finding all codewords within a specified Hamming distance from the input string. We present an improved list decoding algorithm for decoding Reed-Solomon codes. The list decoding problem for Reed-Solomon codes reduces to the following "curve-fitting" problem over a field F: Given n points {(x/sub i/.y/sub i/)}/sub i=1//sup n/, x/sub i/,y/sub i//spl isin/F, and a degree parameter k and error parameter e, find all univariate polynomials p of degree at most k such that y/sub i/=p(x/sub i/) for all but at most e values of i/spl isin/{1....,n}. We give an algorithm that solves this problem for e 1/3, where the result yields the first asymptotic improvement in four decades. The algorithm generalizes to solve the list decoding problem for other algebraic codes, specifically alternant codes (a class of codes including BCH codes) and algebraic-geometric codes. In both cases, we obtain a list decoding algorithm that corrects up to n-/spl radic/(n-d-) errors, where n is the block length and d' is the designed distance of the code. The improvement for the case of algebraic-geometric codes extends the methods of Shokrollahi and Wasserman (1998) and improves upon their bound for every choice of n and d'. We also present some other consequences of our algorithm including a solution to a weighted curve fitting problem, which is of use in soft-decision decoding algorithms for Reed-Solomon codes.

532 citations

Book
15 Jul 2015
TL;DR: This text is the first to present a comprehensive treatment of unconditionally secure techniques for multiparty computation (MPC) and secret sharing, focusing on asymptotic results with interesting applications related to MPC.
Abstract: In a data-driven society, individuals and companies encounter numerous situations where private information is an important resource. How can parties handle confidential data if they do not trust everyone involved? This text is the first to present a comprehensive treatment of unconditionally secure techniques for multiparty computation (MPC) and secret sharing. In a secure MPC, each party possesses some private data, while secret sharing provides a way for one party to spread information on a secret such that all parties together hold full information, yet no single party has all the information. The authors present basic feasibility results from the last 30 years, generalizations to arbitrary access structures using linear secret sharing, some recent techniques for efficiency improvements, and a general treatment of the theory of secret sharing, focusing on asymptotic results with interesting applications related to MPC.

428 citations

Journal ArticleDOI
30 Jul 2007
TL;DR: The contributions that have led to the most significant improvements in performance versus complexity for practical applications are focused on, particularly on the additive white Gaussian noise channel.
Abstract: Starting from Shannon's celebrated 1948 channel coding theorem, we trace the evolution of channel coding from Hamming codes to capacity-approaching codes. We focus on the contributions that have led to the most significant improvements in performance versus complexity for practical applications, particularly on the additive white Gaussian noise channel. We discuss algebraic block codes, and why they did not prove to be the way to get to the Shannon limit. We trace the antecedents of today's capacity-approaching codes: convolutional codes, concatenated codes, and other probabilistic coding schemes. Finally, we sketch some of the practical applications of these codes.

390 citations