scispace - formally typeset
Search or ask a question
Author

Thad Starner

Bio: Thad Starner is an academic researcher from Georgia Institute of Technology. The author has contributed to research in topics: Wearable computer & Gesture. The author has an hindex of 72, co-authored 376 publications receiving 24485 citations. Previous affiliations of Thad Starner include Massachusetts Institute of Technology & Electronics and Telecommunications Research Institute.


Papers
More filters
Journal ArticleDOI
TL;DR: A whirlwind survey of energy harvesting can be found in this article, where the authors present a survey of recent advances in energy harvesting, spanning historic and current developments in sensor networks and mobile devices.
Abstract: Energy harvesting has grown from long-established concepts into devices for powering ubiquitously deployed sensor networks and mobile electronics. Systems can scavenge power from human activity or derive limited energy from ambient heat, light, radio, or vibrations. Ongoing power management developments enable battery-powered electronics to live longer. Such advances include dynamic optimization of voltage and clock rate, hybrid analog-digital designs, and clever wake-up procedures that keep the electronics mostly inactive. Exploiting renewable energy resources in the device's environment, however, offers a power source limited by the device's physical survival rather than an adjunct energy store. Energy harvesting's true legacy dates to the water wheel and windmill, and credible approaches that scavenge energy from waste heat or vibration have been around for many decades. Nonetheless, the field has encountered renewed interest as low-power electronics, wireless standards, and miniaturization conspire to populate the world with sensor networks and mobile devices. This article presents a whirlwind survey through energy harvesting, spanning historic and current developments.

2,497 citations

Journal ArticleDOI
TL;DR: Two real-time hidden Markov model-based systems for recognizing sentence-level continuous American sign language (ASL) using a single camera to track the user's unadorned hands are presented.
Abstract: We present two real-time hidden Markov model-based systems for recognizing sentence-level continuous American sign language (ASL) using a single camera to track the user's unadorned hands. The first system observes the user from a desk mounted camera and achieves 92 percent word accuracy. The second system mounts the camera in a cap worn by the user and achieves 98 percent accuracy (97 percent with an unrestricted grammar). Both experiments use a 40-word lexicon.

1,350 citations

Journal ArticleDOI
01 Oct 2003
TL;DR: This work presents a system that automatically clusters GPS data taken over an extended period of time into meaningful locations at multiple scales and incorporates these locations into a Markov model that can be consulted for use with a variety of applications in both single-user and collaborative scenarios.
Abstract: Wearable computers have the potential to act as intelligent agents in everyday life and to assist the user in a variety of tasks, using context to determine how to act. Location is the most common form of context used by these agents to determine the user's task. However, another potential use of location context is the creation of a predictive model of the user's future movements. We present a system that automatically clusters GPS data taken over an extended period of time into meaningful locations at multiple scales. These locations are then incorporated into a Markov model that can be consulted for use with a variety of applications in both single-user and collaborative scenarios.

1,211 citations

Book ChapterDOI
TL;DR: The Aware Home project is introduced and some of the technology-and human-centered research objectives in creating the Aware Home are outlined, to create a living laboratory for research in ubiquitous computing for everyday activities.
Abstract: We are building a home, called the Aware Home, to create a living laboratory for research in ubiquitous computing for everyday activities. This paper introduces the Aware Home project and outlines some of our technology-and human-centered research objectives in creating the Aware Home.

1,119 citations

Proceedings ArticleDOI
21 Nov 1995
TL;DR: A real-time HMM-based system for recognizing sentence level American Sign Language (ASL) which attains a word accuracy of 99.2% without explicitly modeling the fingers.
Abstract: Hidden Markov models (HMMs) have been used prominently and successfully in speech recognition and, more recently, in handwriting recognition. Consequently, they seem ideal for visual recognition of complex, structured hand gestures such as are found in sign language. We describe a real-time HMM-based system for recognizing sentence level American Sign Language (ASL) which attains a word accuracy of 99.2% without explicitly modeling the fingers.

916 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis.
Abstract: Machine Learning is the study of methods for programming computers to learn. Computers are applied to a wide range of tasks, and for most of these it is relatively easy for programmers to design and implement the necessary software. However, there are many tasks for which this is difficult or impossible. These can be divided into four general categories. First, there are problems for which there exist no human experts. For example, in modern automated manufacturing facilities, there is a need to predict machine failures before they occur by analyzing sensor readings. Because the machines are new, there are no human experts who can be interviewed by a programmer to provide the knowledge necessary to build a computer system. A machine learning system can study recorded data and subsequent machine failures and learn prediction rules. Second, there are problems where human experts exist, but where they are unable to explain their expertise. This is the case in many perceptual tasks, such as speech recognition, hand-writing recognition, and natural language understanding. Virtually all humans exhibit expert-level abilities on these tasks, but none of them can describe the detailed steps that they follow as they perform them. Fortunately, humans can provide machines with examples of the inputs and correct outputs for these tasks, so machine learning algorithms can learn to map the inputs to the outputs. Third, there are problems where phenomena are changing rapidly. In finance, for example, people would like to predict the future behavior of the stock market, of consumer purchases, or of exchange rates. These behaviors change frequently, so that even if a programmer could construct a good predictive computer program, it would need to be rewritten frequently. A learning program can relieve the programmer of this burden by constantly modifying and tuning a set of learned prediction rules. Fourth, there are applications that need to be customized for each computer user separately. Consider, for example, a program to filter unwanted electronic mail messages. Different users will need different filters. It is unreasonable to expect each user to program his or her own rules, and it is infeasible to provide every user with a software engineer to keep the rules up-to-date. A machine learning system can learn which mail messages the user rejects and maintain the filtering rules automatically. Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis. Statistics focuses on understanding the phenomena that have generated the data, often with the goal of testing different hypotheses about those phenomena. Data mining seeks to find patterns in the data that are understandable by people. Psychological studies of human learning aspire to understand the mechanisms underlying the various learning behaviors exhibited by people (concept learning, skill acquisition, strategy change, etc.).

13,246 citations

Journal ArticleDOI
TL;DR: In this article, the authors present a cloud centric vision for worldwide implementation of Internet of Things (IoT) and present a Cloud implementation using Aneka, which is based on interaction of private and public Clouds, and conclude their IoT vision by expanding on the need for convergence of WSN, the Internet and distributed computing directed at technological research community.

9,593 citations

Journal ArticleDOI
TL;DR: In this paper, the authors provide an up-to-date critical survey of still-and video-based face recognition research, and provide some insights into the studies of machine recognition of faces.
Abstract: As one of the most successful applications of image analysis and understanding, face recognition has recently received significant attention, especially during the past several years. At least two reasons account for this trend: the first is the wide range of commercial and law enforcement applications, and the second is the availability of feasible technologies after 30 years of research. Even though current machine recognition systems have reached a certain level of maturity, their success is limited by the conditions imposed by many real applications. For example, recognition of face images acquired in an outdoor environment with changes in illumination and/or pose remains a largely unsolved problem. In other words, current systems are still far away from the capability of the human perception system.This paper provides an up-to-date critical survey of still- and video-based face recognition research. There are two underlying motivations for us to write this survey paper: the first is to provide an up-to-date review of the existing literature, and the second is to offer some insights into the studies of machine recognition of faces. To provide a comprehensive survey, we not only categorize existing recognition techniques but also present detailed descriptions of representative methods within each category. In addition, relevant topics such as psychophysical studies, system evaluation, and issues of illumination and pose variation are covered.

6,384 citations

Journal ArticleDOI
TL;DR: Pfinder is a real-time system for tracking people and interpreting their behavior that uses a multiclass statistical model of color and shape to obtain a 2D representation of head and hands in a wide range of viewing conditions.
Abstract: Pfinder is a real-time system for tracking people and interpreting their behavior. It runs at 10 Hz on a standard SGI Indy computer, and has performed reliably on thousands of people in many different physical locations. The system uses a multiclass statistical model of color and shape to obtain a 2D representation of head and hands in a wide range of viewing conditions. Pfinder has been successfully used in a wide range of applications including wireless interfaces, video databases, and low-bandwidth coding.

4,280 citations