scispace - formally typeset
Search or ask a question
Author

Thalappil Pradeep

Bio: Thalappil Pradeep is an academic researcher from Indian Institute of Technology Madras. The author has contributed to research in topics: Cluster (physics) & Mass spectrometry. The author has an hindex of 76, co-authored 581 publications receiving 24664 citations. Previous affiliations of Thalappil Pradeep include DST Systems & Lawrence Berkeley National Laboratory.


Papers
More filters
Journal ArticleDOI
TL;DR: The antibacterial property and ability to form stable thin films may provide an opportunity to use such composites for medical and environmental remediation applications as well.
Abstract: Multifunctional graphene oxide/reduced graphene oxide (GO/RGO) composites were prepared through electrostatic interaction using biocompatible ingredients. Different functionalities were added to GO/RGO by anchoring materials such as native lactoferrin (NLf), NLf protected Au clusters (designated as Au@NLf), chitosan (Ch) and combinations thereof. Anchoring of Ch and NLf enhances the antibacterial property of RGO/GO. The addition of Ch to RGO/GO not only helped in forming stable dispersions but also helped in fabricating large (cm2) area films through a simple solvent evaporation technique. Functionalities such as photoluminescence were added to Ch-RGO/GO composites by anchoring Au@NLf on it. The composites thus formed showed stable luminescence in presence of various metal ions in the solid state. The composite showed reasonable stability against pH and temperature variations as well. The as-prepared films were transparent and the transparency could be modulated by controlling the concentration of RGO/GO ...

112 citations

Journal ArticleDOI
TL;DR: XPS and FTIR spectroscopic studies provide evidence in support of chemical interaction between hydroxylated pyrite and thehydroxyl groups of the polymeric depressants.

111 citations

Journal ArticleDOI
21 Aug 1998-Langmuir
TL;DR: The difference in adsorbate geometry is presumably due to the changes in interaction and not to differences in the lattice constants of the two surfaces, which is rather small as discussed by the authors.
Abstract: 1,4-Benzenedimethanethiol (HS−CH2−C6H4−CH2−SH, BDMT) adsorbs dissociatively on silver and gold surfaces yielding self-assembled monolayers with the thiolate structure. Whereas the molecule adsorbs flat on silver as a result of the loss of two thiol protons, it adsorbs with the molecular plane perpendicular to the gold surface with the loss of one thiol proton. This is manifested by the presence of the ring C−H and S−H stretches and the S−C−H bend for the Au monolayer and the absence of these for the Ag monolayer in the surface-enhanced Raman spectra. The difference in adsorbate geometry is presumably due to the changes in interaction and not to differences in the lattice constants of the two surfaces, which is rather small. In both cases, metal−adsorbate π bonding is weak, resulting in only small shifts in the ring modes. BDMT monolayers are more stable than alkanethiol monolayers and desorb only at a fairly high temperature of 423 K in air, whereas alkanethiols desorb below 373 K. An increase in temperat...

108 citations

01 Jan 2007
TL;DR: In this article, Das et al. describe a tienda online donde Comprar Nanofluids: Science and Technology al precio 121,34 € de Sarit K. Das | Stephen U. Choi | Wenhua Yu | T. Pradeep.
Abstract: Tienda online donde Comprar Nanofluids: Science and Technology al precio 121,34 € de Sarit K. Das | Stephen U. Choi | Wenhua Yu | T. Pradeep, tienda de Libros de Medicina, Libros de Quimica - Quimica

107 citations

Journal ArticleDOI
TL;DR: Amines are used extensively as reductants and subsequent capping agents in the synthesis of metal nanoparticles, especially gold, due to its affinity to nitrogen as discussed by the authors, and it is found that the oxidative polymerization of the amine goes in step with the formation of gold nanoparticles.
Abstract: Amines are used extensively as reductants and subsequent capping agents in the synthesis of metal nanoparticles, especially gold, due to its affinity to nitrogen. Taking 2-methyl aniline as an example, we show that metal reduction is followed by polymerization of the amine, while part of it covers the nanoparticle surface another fraction deposits in the solution. It is found that the oxidative polymerization of the amine goes in step with the formation of gold nanoparticles. The gold nanoparticles thus formed have a mean diameter of 20 nm. The polymerized amine encapsulates the gold nanoparticle forming a robust shell of about 5 nm thickness, making the gold core inert towards mineralizing agents such as chloroform, bromoform, sodium cyanide, benzylchloride, etc. which react with the naked gold nanoparticles. The deposited polymer is largely protonated, taking up protons from the medium during its formation. Similar results have been observed in the case of aniline also. The materials have been fully characterized by spectroscopy and microscopy.

107 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

01 May 1993
TL;DR: Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems.
Abstract: Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of inter-atomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dynamics models which can be difficult to parallelize efficiently—those with short-range forces where the neighbors of each atom change rapidly. They can be implemented on any distributed-memory parallel machine which allows for message-passing of data between independently executing processors. The algorithms are tested on a standard Lennard-Jones benchmark problem for system sizes ranging from 500 to 100,000,000 atoms on several parallel supercomputers--the nCUBE 2, Intel iPSC/860 and Paragon, and Cray T3D. Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems. For large problems, the spatial algorithm achieves parallel efficiencies of 90% and a 1840-node Intel Paragon performs up to 165 faster than a single Cray C9O processor. Trade-offs between the three algorithms and guidelines for adapting them to more complex molecular dynamics simulations are also discussed.

29,323 citations

28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: Silver nanoparticles have emerged up with diverse medical applications ranging from silver based dressings, silver coated medicinal devices, such as nanogels, nanolotions, etc, due to its capability of modulating metals into their nanosize.

5,014 citations

Journal ArticleDOI
TL;DR: The advent of AuNP as a sensory element provided a broad spectrum of innovative approaches for the detection of metal ions, small molecules, proteins, nucleic acids, malignant cells, etc. in a rapid and efficient manner.
Abstract: Detection of chemical and biological agents plays a fundamental role in biomedical, forensic and environmental sciences1–4 as well as in anti bioterrorism applications.5–7 The development of highly sensitive, cost effective, miniature sensors is therefore in high demand which requires advanced technology coupled with fundamental knowledge in chemistry, biology and material sciences.8–13 In general, sensors feature two functional components: a recognition element to provide selective/specific binding with the target analytes and a transducer component for signaling the binding event. An efficient sensor relies heavily on these two essential components for the recognition process in terms of response time, signal to noise (S/N) ratio, selectivity and limits of detection (LOD).14,15 Therefore, designing sensors with higher efficacy depends on the development of novel materials to improve both the recognition and transduction processes. Nanomaterials feature unique physicochemical properties that can be of great utility in creating new recognition and transduction processes for chemical and biological sensors15–27 as well as improving the S/N ratio by miniaturization of the sensor elements.28 Gold nanoparticles (AuNPs) possess distinct physical and chemical attributes that make them excellent scaffolds for the fabrication of novel chemical and biological sensors (Figure 1).29–36 First, AuNPs can be synthesized in a straightforward manner and can be made highly stable. Second, they possess unique optoelectronic properties. Third, they provide high surface-to-volume ratio with excellent biocompatibility using appropriate ligands.30 Fourth, these properties of AuNPs can be readily tuned varying their size, shape and the surrounding chemical environment. For example, the binding event between recognition element and the analyte can alter physicochemical properties of transducer AuNPs, such as plasmon resonance absorption, conductivity, redox behavior, etc. that in turn can generate a detectable response signal. Finally, AuNPs offer a suitable platform for multi-functionalization with a wide range of organic or biological ligands for the selective binding and detection of small molecules and biological targets.30–32,36 Each of these attributes of AuNPs has allowed researchers to develop novel sensing strategies with improved sensitivity, stability and selectivity. In the last decade of research, the advent of AuNP as a sensory element provided us a broad spectrum of innovative approaches for the detection of metal ions, small molecules, proteins, nucleic acids, malignant cells, etc. in a rapid and efficient manner.37 Figure 1 Physical properties of AuNPs and schematic illustration of an AuNP-based detection system. In this current review, we have highlighted the several synthetic routes and properties of AuNPs that make them excellent probes for different sensing strategies. Furthermore, we will discuss various sensing strategies and major advances in the last two decades of research utilizing AuNPs in the detection of variety of target analytes including metal ions, organic molecules, proteins, nucleic acids, and microorganisms.

3,879 citations