scispace - formally typeset
Search or ask a question
Author

Thalappil Pradeep

Bio: Thalappil Pradeep is an academic researcher from Indian Institute of Technology Madras. The author has contributed to research in topics: Cluster (physics) & Mass spectrometry. The author has an hindex of 76, co-authored 581 publications receiving 24664 citations. Previous affiliations of Thalappil Pradeep include DST Systems & Lawrence Berkeley National Laboratory.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a 3D superlattice of dansyl glutathione protected gold nanoparticles, with potential applications in molecular detection, has been synthesized at an air/water interface by controlling the pH of the nanoparticle suspension.
Abstract: Fluorescent three-dimensional (3-D) superlattices of dansyl glutathione protected gold nanoparticles, with potential applications in molecular detection, have been synthesized at an air/water interface by controlling the pH of the nanoparticle suspension. The number of fluorophores per nanoparticle was calculated to be ∼127. Morphologies of the superlattice crystals were examined using scanning electron microscopy (SEM). Most of the crystals observed were triangular in shape. High-resolution transmission electron microscopy (HRTEM) and small angle X-ray scattering (SAXS) were used to study the packing of nanoparticles in these crystals. Both these studies showed that the nanoparticles were arranged in a face-centered cubic (fcc) pattern with a particle-particle distance (center-center) of ∼10.5 nm. Evolution of the crystal morphologies with time was also examined. The fluorescence properties of these triangles were studied using confocal fluorescence imaging and confocal Raman mapping, which were in good agreement with the morphologies observed by SEM. The superlattice exhibits near-infrared (NIR) absorption in the range 1100–2500 nm. Easy synthesis of such functional nanoparticle-based solids makes it possible to use them in novel applications. We utilized the fluorescence of dansyl glutathione gold superlattice crystals for the selective detection of bovine serum albumin (BSA), the major protein constituent of blood plasma, based on the selective binding of the naphthalene ring of the dansyl moiety with site I of BSA.

29 citations

Journal ArticleDOI
TL;DR: In this article, the degradation of chlorocarbons (CCl4, C6H5CH2Cl and CHCl3) in solution at room temperature (27 ± 4 °C) by the monolayer-protected silver quantum cluster, Ag9MSA7 (MSA: mercaptosuccinic acid) in the presence of isopropyl alcohol (IPA) was described.
Abstract: We describe the degradation of chlorocarbons (CCl4, C6H5CH2Cl and CHCl3) in solution at room temperature (27 ± 4 °C) by the monolayer-protected silver quantum cluster, Ag9MSA7 (MSA: mercaptosuccinic acid) in the presence of isopropyl alcohol (IPA). The main degradation products were silver chloride and amorphous carbon. Benzyl chloride was less reactive towards clusters than CCl4 and CHCl3. Materials used in the reactions and the reaction products were characterized using several spectroscopic and microscopic tools such as ultraviolet-visible (UV/Vis) absorption spectroscopy, Fourier transform infrared spectroscopy (FTIR), photoluminescence spectroscopy, X-ray diffraction (XRD), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), energy dispersive analysis of X-rays (EDAX) and scanning electron microscopy (SEM). We have shown that clusters are more efficient for the degradation of halocarbons than the corresponding monolayer-protected nanoparticles (Ag@MSA, particle diameter 15 ± 5 nm) at a given time and temperature. The higher reactivity of clusters is attributed to their small size and large surface area. Clusters and nanoparticles were used for reactions in supported (on neutral alumina) and unsupported forms. A possible mechanism for the reaction has been postulated on the basis of experimental results.

29 citations

Journal ArticleDOI
TL;DR: The first observation of a large pressure-induced red-shift of the photoluminescence band in single crystals of C 60 and the associated color change of the sample from red to black at 3.2 GPa was reported in this article.

29 citations

Journal ArticleDOI
TL;DR: In this article, the effect of temperature on the stability of glutathione-protected Ag25 clusters was investigated and it was shown that the clusters are stable up to 50 °C and above this temperature they decompose to yield Ag2S nanoparticles with an average diameter of 3 ± 1 nm.
Abstract: We report the effect of temperature on the stability of glutathione-protected Ag25 clusters. The clusters are stable up to 50 °C. Interestingly, above this temperature, they decompose to yield Ag2S nanoparticles with an average diameter of 3 ± 1 nm, crystallizing in monoclinic acanthite polymorph. Unlike conventional methods of syntheses of Ag2S, where a temperature of ∼200 °C is needed, our study shows the possibility of synthesis of Ag2S nanoparticles at much lower temperatures. This is in contrast with silver nanoparticles protected with thiolates, which typically give silver and alkyl/aryl disulfide upon thermal activation. The mechanism of cluster decomposition and formation of silver sulphide nanoparticles was investigated using various analytical techniques such as ultraviolet–visible spectroscopy, X-ray diffraction scanning electron microscopy, energy-dispersive analysis of X-rays, transmission electron microscopy, and electrospray ionization mass spectrometry. The monolayer of the cluster undergo...

29 citations

Journal ArticleDOI
TL;DR: The results acquired indicate an immense potential for scaling up the photoreactor as a sustainable tertiary treatment technology in water treatment plants.

28 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

01 May 1993
TL;DR: Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems.
Abstract: Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of inter-atomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dynamics models which can be difficult to parallelize efficiently—those with short-range forces where the neighbors of each atom change rapidly. They can be implemented on any distributed-memory parallel machine which allows for message-passing of data between independently executing processors. The algorithms are tested on a standard Lennard-Jones benchmark problem for system sizes ranging from 500 to 100,000,000 atoms on several parallel supercomputers--the nCUBE 2, Intel iPSC/860 and Paragon, and Cray T3D. Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems. For large problems, the spatial algorithm achieves parallel efficiencies of 90% and a 1840-node Intel Paragon performs up to 165 faster than a single Cray C9O processor. Trade-offs between the three algorithms and guidelines for adapting them to more complex molecular dynamics simulations are also discussed.

29,323 citations

28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: Silver nanoparticles have emerged up with diverse medical applications ranging from silver based dressings, silver coated medicinal devices, such as nanogels, nanolotions, etc, due to its capability of modulating metals into their nanosize.

5,014 citations

Journal ArticleDOI
TL;DR: The advent of AuNP as a sensory element provided a broad spectrum of innovative approaches for the detection of metal ions, small molecules, proteins, nucleic acids, malignant cells, etc. in a rapid and efficient manner.
Abstract: Detection of chemical and biological agents plays a fundamental role in biomedical, forensic and environmental sciences1–4 as well as in anti bioterrorism applications.5–7 The development of highly sensitive, cost effective, miniature sensors is therefore in high demand which requires advanced technology coupled with fundamental knowledge in chemistry, biology and material sciences.8–13 In general, sensors feature two functional components: a recognition element to provide selective/specific binding with the target analytes and a transducer component for signaling the binding event. An efficient sensor relies heavily on these two essential components for the recognition process in terms of response time, signal to noise (S/N) ratio, selectivity and limits of detection (LOD).14,15 Therefore, designing sensors with higher efficacy depends on the development of novel materials to improve both the recognition and transduction processes. Nanomaterials feature unique physicochemical properties that can be of great utility in creating new recognition and transduction processes for chemical and biological sensors15–27 as well as improving the S/N ratio by miniaturization of the sensor elements.28 Gold nanoparticles (AuNPs) possess distinct physical and chemical attributes that make them excellent scaffolds for the fabrication of novel chemical and biological sensors (Figure 1).29–36 First, AuNPs can be synthesized in a straightforward manner and can be made highly stable. Second, they possess unique optoelectronic properties. Third, they provide high surface-to-volume ratio with excellent biocompatibility using appropriate ligands.30 Fourth, these properties of AuNPs can be readily tuned varying their size, shape and the surrounding chemical environment. For example, the binding event between recognition element and the analyte can alter physicochemical properties of transducer AuNPs, such as plasmon resonance absorption, conductivity, redox behavior, etc. that in turn can generate a detectable response signal. Finally, AuNPs offer a suitable platform for multi-functionalization with a wide range of organic or biological ligands for the selective binding and detection of small molecules and biological targets.30–32,36 Each of these attributes of AuNPs has allowed researchers to develop novel sensing strategies with improved sensitivity, stability and selectivity. In the last decade of research, the advent of AuNP as a sensory element provided us a broad spectrum of innovative approaches for the detection of metal ions, small molecules, proteins, nucleic acids, malignant cells, etc. in a rapid and efficient manner.37 Figure 1 Physical properties of AuNPs and schematic illustration of an AuNP-based detection system. In this current review, we have highlighted the several synthetic routes and properties of AuNPs that make them excellent probes for different sensing strategies. Furthermore, we will discuss various sensing strategies and major advances in the last two decades of research utilizing AuNPs in the detection of variety of target analytes including metal ions, organic molecules, proteins, nucleic acids, and microorganisms.

3,879 citations