scispace - formally typeset
Search or ask a question
Author

Thalappil Pradeep

Bio: Thalappil Pradeep is an academic researcher from Indian Institute of Technology Madras. The author has contributed to research in topics: Cluster (physics) & Mass spectrometry. The author has an hindex of 76, co-authored 581 publications receiving 24664 citations. Previous affiliations of Thalappil Pradeep include DST Systems & Lawrence Berkeley National Laboratory.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article , a review of recent advances in the supramolecular assembly of noble metal nanoclusters and applications of the resulting structures is presented, and various emerging properties of the assembled systems in terms of their mechanical, optical, magnetic, charge transfer, etc. properties and applications are presented.
Abstract: Supramolecular chemistry (SC) of noble metal nanoclusters (NMNCs) is one of the fascinating areas of contemporary materials science. It is principally concerned with the noncovalent interactions between NMNCs, as well as between NMNCs and molecules or nanoparticles. This review focuses on recent advances in the supramolecular assembly of NMNCs and applications of the resulting structures. We have divided the topics into four distinct subgroups: (i) SC of NMNCs in gaseous and solution phases, (ii) supramolecular interactions of NMNCs in crystal lattices, (iii) supramolecular assemblies of NMNCs with nanoparticles and NMNCs, and (iv) SC of NMNCs with other molecules. The last explores their interactions with fullerenes, cyclodextrins, cucurbiturils, crown ethers, and more. After discussing these topics concisely, various emerging properties of the assembled systems in terms of their mechanical, optical, magnetic, charge-transfer, etc. properties and applications are presented. SC is seen to provide a crucial role to induce new physical and chemical properties in such hybrid nanomaterials. Finally, we highlight the scope for expansion and future research in the area. This review would be useful to those working on functional nanostructures in general and NMNCs in particular.

15 citations

Journal ArticleDOI
TL;DR: Successful integration of different chemical components in single NWs is expected to open up new application possibilities as physical and chemical properties of the heterostructure can be exploited.
Abstract: Growth of isolated axial heterojunction nanowires by a solution phase growth process is reported The dumb-bell shaped nanowires contain two silver telluride sections at the extremes joined by a tellurium section Reaction of silver nitrate with tellurium NWs in aqueous solution at a molar ratio of 1 : 1 leads to the formation of amorphous partially silver reacted Te NWs Low temperature (75 °C) solution phase annealing of these silver deficient NWs results in phase segregation producing crystalline Ag2Te and Te phases with clear phase boundaries along the wire axis Structural characterization of these dumb-bell shaped NWs was performed with different microscopic and spectroscopic tools Solution phase silver concentration over the course of annealing indicated leaching of silver into the solution during the formation of biphasic NWs Similar Ag : Te ratios were observed in both partially silver reacted Te NWs and phase segregated Ag2Te–Te–Ag2Te NWs and this was attributed to redeposition of leached silver on the amorphous NW tips which eventually resulted in complete phase segregation Successful integration of different chemical components in single NWs is expected to open up new application possibilities as physical and chemical properties of the heterostructure can be exploited

15 citations

Journal ArticleDOI
TL;DR: A simple theoretical model is proposed to account qualitatively for the generation of the flow-induced transverse potential in transverse direction to the flow and is dependent on the nature of the flowing liquid.
Abstract: We report the generation of a potential difference, of the order of tens of millivolts, induced by the flow of polar liquids over an assembly of gold nanoparticles. The device consisted of two conducting glass plates, one of which contained the gold nanoparticle multilayer assembly. The potential generated is in transverse direction to the flow and is dependent on the nature of the flowing liquid. We propose a simple theoretical model to account qualitatively for the generation of the flow-induced transverse potential.

15 citations

Journal ArticleDOI
01 Aug 2018-Carbon
TL;DR: In this paper, the authors demonstrate the mechano-chemical assembly of functionalized graphene layers into 3D graphitic solids via room temperature and low energy consuming processing, showing that the chemical functional groups on graphene layers are interconnected at room temperature under pressure leading to porous three-dimensional structures with tunable mechanical and electrical properties.

15 citations

Journal ArticleDOI
TL;DR: The new cluster formation methodology allows investigation of ligand-metal binding including in reactions of industrial importance, such as olefin epoxidation, and the potential use of the ion source in ion soft landing is demonstrated by reproducing the mass spectra of salts heated in air using a custom surface science instrument.
Abstract: Electrospray ionization of metal salt solutions followed by ambient heating transforms the resulting salt clusters into new species, primarily naked ionic metal clusters. The experiment is done by passing the clusters through a heated coiled loop outside the mass spectrometer which releases the counter-anion while generating the anionic or cationic naked metal cluster. The nature of the anion in the starting salt determines the type of metal cluster observed. For example, silver acetate upon heating generates only positive silver clusters, Agn+, but silver fluoride generates both positive and negative silver clusters, Agn+/− (3 < n < 20). Both unheated and heated metal salt sprays yield ions with characteristic geometric and electronic magic numbers. There is also a strong odd/even effect in the cationic and anionic silver clusters. Thermochemical control is suggested as the basis for favored formation of the observed clusters, with anhydride elimination occurring from the acetates and fluorine elimination from the fluorides to give cationic and anionic clusters, respectively. Data on the intermediates observed as the temperature is ramped support this. The naked metal clusters react with gaseous reagents in the open air, including methyl substituted pyridines, hydrocarbons, common organic solvents, ozone, ethylene, and propylene. Argentation of hydrocarbons, including saturated hydrocarbons, is shown to occur and serves as a useful analytical ionization method. The new cluster formation methodology allows investigation of ligand–metal binding including in reactions of industrial importance, such as olefin epoxidation. These reactions provide insight into the physicochemical properties of silver cluster anions and cations. The potential use of the ion source in ion soft landing is demonstrated by reproducing the mass spectra of salts heated in air using a custom surface science instrument.

15 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

01 May 1993
TL;DR: Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems.
Abstract: Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of inter-atomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dynamics models which can be difficult to parallelize efficiently—those with short-range forces where the neighbors of each atom change rapidly. They can be implemented on any distributed-memory parallel machine which allows for message-passing of data between independently executing processors. The algorithms are tested on a standard Lennard-Jones benchmark problem for system sizes ranging from 500 to 100,000,000 atoms on several parallel supercomputers--the nCUBE 2, Intel iPSC/860 and Paragon, and Cray T3D. Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems. For large problems, the spatial algorithm achieves parallel efficiencies of 90% and a 1840-node Intel Paragon performs up to 165 faster than a single Cray C9O processor. Trade-offs between the three algorithms and guidelines for adapting them to more complex molecular dynamics simulations are also discussed.

29,323 citations

28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: Silver nanoparticles have emerged up with diverse medical applications ranging from silver based dressings, silver coated medicinal devices, such as nanogels, nanolotions, etc, due to its capability of modulating metals into their nanosize.

5,014 citations

Journal ArticleDOI
TL;DR: The advent of AuNP as a sensory element provided a broad spectrum of innovative approaches for the detection of metal ions, small molecules, proteins, nucleic acids, malignant cells, etc. in a rapid and efficient manner.
Abstract: Detection of chemical and biological agents plays a fundamental role in biomedical, forensic and environmental sciences1–4 as well as in anti bioterrorism applications.5–7 The development of highly sensitive, cost effective, miniature sensors is therefore in high demand which requires advanced technology coupled with fundamental knowledge in chemistry, biology and material sciences.8–13 In general, sensors feature two functional components: a recognition element to provide selective/specific binding with the target analytes and a transducer component for signaling the binding event. An efficient sensor relies heavily on these two essential components for the recognition process in terms of response time, signal to noise (S/N) ratio, selectivity and limits of detection (LOD).14,15 Therefore, designing sensors with higher efficacy depends on the development of novel materials to improve both the recognition and transduction processes. Nanomaterials feature unique physicochemical properties that can be of great utility in creating new recognition and transduction processes for chemical and biological sensors15–27 as well as improving the S/N ratio by miniaturization of the sensor elements.28 Gold nanoparticles (AuNPs) possess distinct physical and chemical attributes that make them excellent scaffolds for the fabrication of novel chemical and biological sensors (Figure 1).29–36 First, AuNPs can be synthesized in a straightforward manner and can be made highly stable. Second, they possess unique optoelectronic properties. Third, they provide high surface-to-volume ratio with excellent biocompatibility using appropriate ligands.30 Fourth, these properties of AuNPs can be readily tuned varying their size, shape and the surrounding chemical environment. For example, the binding event between recognition element and the analyte can alter physicochemical properties of transducer AuNPs, such as plasmon resonance absorption, conductivity, redox behavior, etc. that in turn can generate a detectable response signal. Finally, AuNPs offer a suitable platform for multi-functionalization with a wide range of organic or biological ligands for the selective binding and detection of small molecules and biological targets.30–32,36 Each of these attributes of AuNPs has allowed researchers to develop novel sensing strategies with improved sensitivity, stability and selectivity. In the last decade of research, the advent of AuNP as a sensory element provided us a broad spectrum of innovative approaches for the detection of metal ions, small molecules, proteins, nucleic acids, malignant cells, etc. in a rapid and efficient manner.37 Figure 1 Physical properties of AuNPs and schematic illustration of an AuNP-based detection system. In this current review, we have highlighted the several synthetic routes and properties of AuNPs that make them excellent probes for different sensing strategies. Furthermore, we will discuss various sensing strategies and major advances in the last two decades of research utilizing AuNPs in the detection of variety of target analytes including metal ions, organic molecules, proteins, nucleic acids, and microorganisms.

3,879 citations