scispace - formally typeset
Search or ask a question
Author

Theam Soon Lim

Other affiliations: Max Planck Society
Bio: Theam Soon Lim is an academic researcher from Universiti Sains Malaysia. The author has contributed to research in topics: Phage display & Monoclonal antibody. The author has an hindex of 16, co-authored 91 publications receiving 777 citations. Previous affiliations of Theam Soon Lim include Max Planck Society.


Papers
More filters
Journal ArticleDOI
TL;DR: The immense potential of probiotics to fill the gap as alternative growth promoters and evidences of beneficial effects of probiotic application in poultry production are discussed.
Abstract: Poultry industry has always been a dynamic and integral part of national economies in many countries. Economic losses incur especially in large-scale rearing facilities, often attributed to the deterioration of environmental conditions, poultry exposure to stressors and development of diseases. While antibiotics have been commonly used for prophylactic purposes and as growth stimulants, extensive documentation of antimicrobial resistance among pathogenic bacteria due to indiscriminate utilization of antibiotic in the industry has led to public and governmental outcries. Elimination of antibiotics from poultry production has thus encouraged intensive search for alternatives. In this review, we discuss the immense potential of probiotics to fill the gap as alternative growth promoters and evidences of beneficial effects of probiotic application in poultry production.

83 citations

Journal ArticleDOI
TL;DR: In this mini review, the methods, progresses and challenges for the prediction of twilight-zone proteins were discussed and it was suggested that combination of different methods brings an improved success in the prediction.
Abstract: Protein structure prediction from amino acid sequence has been one of the most challenging aspects in computational structural biology despite significant progress in recent years showed by critical assessment of protein structure prediction (CASP) experiments. When experimentally determined structures are unavailable, the predictive structures may serve as starting points to study a protein. If the target protein consists of homologous region, high-resolution (typically <1.5 A) model can be built via comparative modelling. However, when confronted with low sequence similarity of the target protein (also known as twilight-zone protein, sequence identity with available templates is less than 30 %), the protein structure prediction has to be initiated from scratch. Traditionally, twilight-zone proteins can be predicted via threading or ab initio method. Based on the current trend, combination of different methods brings an improved success in the prediction of twilight-zone proteins. In this mini review, the methods, progresses and challenges for the prediction of twilight-zone proteins were discussed.

65 citations

Journal ArticleDOI
TL;DR: Isothermal amplification has been extensively studied in the field of medical diagnostics in the last decade as discussed by the authors, where many isothermal amplification methods have been introduced utilizing different mechanisms, enzymes, and conditions.
Abstract: The introduction of nucleic acid amplification techniques has revolutionized the field of medical diagnostics in the last decade. The advent of PCR catalyzed the increasing application of DNA, not just for molecular cloning but also for molecular based diagnostics. Since the introduction of PCR, a deeper understanding of molecular mechanisms and enzymes involved in DNA/RNA replication has spurred the development of novel methods devoid of temperature cycling. Isothermal amplification methods have since been introduced utilizing different mechanisms, enzymes, and conditions. The ease with which isothermal amplification methods have allowed nucleic acid amplification to be carried out has had a profound impact on the way molecular diagnostics are being designed after the turn of the millennium. With all the advantages isothermal amplification brings, the issues or complications surrounding each method are heterogeneous making it difficult to identify the best approach for an end-user. This review pays special attention to the various isothermal amplification methods by classifying them based on the mechanistic characteristics which include reaction formats, amplification information, promoter, strand break, and refolding mechanisms. We would also compare the efficiencies and usefulness of each method while highlighting the potential applications and detection methods involved. This review will serve as an overall outlook on the journey and development of isothermal amplification methods as a whole.

44 citations

Journal ArticleDOI
TL;DR: The generation of monospecific binders provides a vital tool for diagnostics at a lower cost and higher efficiency and the flexibility to modify recombinant antibodies allows great applicability to various platforms for use.

42 citations

Journal ArticleDOI
TL;DR: Results showed that the strength of each protocol has been successfully combined as deemed fit to enhance the α-amylase inhibitor peptide discovery.

39 citations


Cited by
More filters
01 May 1993
TL;DR: Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems.
Abstract: Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of inter-atomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dynamics models which can be difficult to parallelize efficiently—those with short-range forces where the neighbors of each atom change rapidly. They can be implemented on any distributed-memory parallel machine which allows for message-passing of data between independently executing processors. The algorithms are tested on a standard Lennard-Jones benchmark problem for system sizes ranging from 500 to 100,000,000 atoms on several parallel supercomputers--the nCUBE 2, Intel iPSC/860 and Paragon, and Cray T3D. Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems. For large problems, the spatial algorithm achieves parallel efficiencies of 90% and a 1840-node Intel Paragon performs up to 165 faster than a single Cray C9O processor. Trade-offs between the three algorithms and guidelines for adapting them to more complex molecular dynamics simulations are also discussed.

29,323 citations

Journal ArticleDOI
18 Jun 2020-Nature
TL;DR: Most convalescent plasma samples obtained from individuals who recover from COVID-19 do not contain high levels of neutralizing activity, and rare but recurring RBD-specific antibodies with potent antiviral activity were found in all individuals tested, suggesting that a vaccine designed to elicit such antibodies could be broadly effective.
Abstract: During the COVID-19 pandemic, SARS-CoV-2 infected millions of people and claimed hundreds of thousands of lives Virus entry into cells depends on the receptor binding domain (RBD) of the SARS-CoV-2 spike protein (S) Although there is no vaccine, it is likely that antibodies will be essential for protection However, little is known about the human antibody response to SARS-CoV-21-5 Here we report on 149 COVID-19 convalescent individuals Plasmas collected an average of 39 days after the onset of symptoms had variable half-maximal pseudovirus neutralizing titres: less than 1:50 in 33% and below 1:1,000 in 79%, while only 1% showed titres above 1:5,000 Antibody sequencing revealed expanded clones of RBD-specific memory B cells expressing closely related antibodies in different individuals Despite low plasma titres, antibodies to three distinct epitopes on RBD neutralized at half-maximal inhibitory concentrations (IC50 values) as low as single digit nanograms per millitre Thus, most convalescent plasmas obtained from individuals who recover from COVID-19 do not contain high levels of neutralizing activity Nevertheless, rare but recurring RBD-specific antibodies with potent antiviral activity were found in all individuals tested, suggesting that a vaccine designed to elicit such antibodies could be broadly effective

1,675 citations

Journal ArticleDOI
TL;DR: This review provides a comprehensive overview of the isothermal amplification of nucleic acids encompassing work published in the past two decades including applications in bioanalysis, diagnostics, nanotechnology, materials science, and device integration.
Abstract: Isothermal amplification of nucleic acids is a simple process that rapidly and efficiently accumulates nucleic acid sequences at constant temperature. Since the early 1990s, various isothermal amplification techniques have been developed as alternatives to polymerase chain reaction (PCR). These isothermal amplification methods have been used for biosensing targets such as DNA, RNA, cells, proteins, small molecules, and ions. The applications of these techniques for in situ or intracellular bioimaging and sequencing have been amply demonstrated. Amplicons produced by isothermal amplification methods have also been utilized to construct versatile nucleic acid nanomaterials for promising applications in biomedicine, bioimaging, and biosensing. The integration of isothermal amplification into microsystems or portable devices improves nucleic acid-based on-site assays and confers high sensitivity. Single-cell and single-molecule analyses have also been implemented based on integrated microfluidic systems. In this review, we provide a comprehensive overview of the isothermal amplification of nucleic acids encompassing work published in the past two decades. First, different isothermal amplification techniques are classified into three types based on reaction kinetics. Then, we summarize the applications of isothermal amplification in bioanalysis, diagnostics, nanotechnology, materials science, and device integration. Finally, several challenges and perspectives in the field are discussed.

1,144 citations