scispace - formally typeset
Search or ask a question
Author

Themistoklis Charalambous

Other affiliations: University of Cyprus, University of Waterloo, Tufts University  ...read more
Bio: Themistoklis Charalambous is an academic researcher from Aalto University. The author has contributed to research in topics: Computer science & Relay. The author has an hindex of 27, co-authored 189 publications receiving 2770 citations. Previous affiliations of Themistoklis Charalambous include University of Cyprus & University of Waterloo.


Papers
More filters
Journal ArticleDOI
TL;DR: It is shown that the proposed relay selection scheme significantly outperforms conventional relay selection policies for all cases and ensures a diversity gain equal to two times the number of relays for large buffer sizes.
Abstract: In this paper, we study the relay selection problem for a finite buffer-aided decode-and-forward cooperative wireless network. A relay selection policy that fully exploits the flexibility offered by the buffering ability of the relay nodes in order to maximize the achieved diversity gain is investigated. This new scheme incorporates the instantaneous strength of the wireless links as well as the status of the finite relay buffers and adapts the relay selection decision on the strongest available link by dynamically switching between relay reception and transmission. In order to analyse the new relay selection policy in terms of outage probability and diversity gain, a theoretical framework that models the evolution of the relay buffers as a Markov chain (MC) is introduced. The construction of the state transition matrix and the related steady state of the MC are studied and their impact on the derivation of the outage probability is investigated. We show that the proposed relay selection scheme significantly outperforms conventional relay selection policies for all cases and ensures a diversity gain equal to two times the number of relays for large buffer sizes.

378 citations

Proceedings ArticleDOI
15 Jun 2009
TL;DR: A new resource management scheme that integrates the Kalman filter into feedback controllers to dynamically allocate CPU resources to virtual machines hosting server applications and is enhanced to deal with multi-tier server applications.
Abstract: Data center virtualization allows cost-effective server consolidation which can increase system throughput and reduce power consumption. Resource management of virtualized servers is an important and challenging task, especially when dealing with fluctuating workloads and complex multi-tier server applications. Recent results in control theory-based resource management have shown the potential benefits of adjusting allocations to match changing workloads.This paper presents a new resource management scheme that integrates the Kalman filter into feedback controllers to dynamically allocate CPU resources to virtual machines hosting server applications. The novelty of our approach is the use of the Kalman filter-the optimal filtering technique for state estimation in the sum of squares sense-to track the CPU utilizations and update the allocations accordingly. Our basic controllers continuously detect and self-adapt to unforeseen workload intensity changes.Our more advanced controller self-configures itself to any workload condition without any a priori information. Indicatively, it results in within 4.8% of the performance of workload-aware controllers under high intensity workload changes, and performs equally well under medium intensity traffic. In addition, our controllers are enhanced to deal with multi-tier server applications: by using the pair-wise resource coupling between application components, they provide a 3% on average server performance improvement when facing large unexpected workload increases when compared to controllers with no such resource-coupling mechanism. We evaluate our techniques by controlling a 3-tier Rubis benchmark web site deployed on a prototype Xen-virtualized cluster.

247 citations

Journal ArticleDOI
TL;DR: A protocol is proposed that ensures asymptotic consensus to the exact average, despite the presence of arbitrary (but bounded) delays in the communication links, and its proof of correctness relies on the weak convergence of a backward product of column stochastic matrices.
Abstract: Classical distributed algorithms for asymptotic average consensus typically assume timely and reliable exchange of information between neighboring components of a given multi-component system. These assumptions are not necessarily valid in practice due to varying delays that might affect computations at different nodes and/or transmissions at different links. In this work, we propose a protocol that overcomes this limitation and, unlike existing consensus protocols in the presence of delays, ensures asymptotic consensus to the exact average, despite the presence of arbitrary (but bounded) delays in the communication links. The protocol requires that each component has knowledge of the number of its out-neighbors (i.e., the number of components to which it can send information) and its proof of correctness relies on the weak convergence of a backward product of column stochastic matrices. The proposed algorithm is demonstrated via illustrative examples.

157 citations

Journal ArticleDOI
30 Nov 2012-PLOS ONE
TL;DR: A taxonomy of interactive behaviors is introduced, which can classify tasks and cost functions that represent the way each agent interacts and enables us to interpret and explain the role distribution and switching between roles when performing joint motor tasks.
Abstract: While motor interaction between a robot and a human, or between humans, has important implications for society as well as promising applications, little research has been devoted to its investigation. In particular, it is important to understand the different ways two agents can interact and generate suitable interactive behaviors. Towards this end, this paper introduces a framework for the description and implementation of interactive behaviors of two agents performing a joint motor task. A taxonomy of interactive behaviors is introduced, which can classify tasks and cost functions that represent the way each agent interacts. The role of an agent interacting during a motor task can be directly explained from the cost function this agent is minimizing and the task constraints. The novel framework is used to interpret and classify previous works on human-robot motor interaction. Its implementation power is demonstrated by simulating representative interactions of two humans. It also enables us to interpret and explain the role distribution and switching between roles when performing joint motor tasks.

137 citations

Journal ArticleDOI
TL;DR: This survey reviews and classify various buffer-aided relay selection policies and discusses their importance through applications and various issues relevant to fifth-generation (5G) networks are discussed.
Abstract: Relays receive and retransmit signals between one or more sources and one or more destinations. Cooperative relaying is a novel technique for wireless communications that increases throughput and extends the coverage of networks. The task of relay selection serves as a building block to realize cooperative relaying. Recently, relays with buffers have been incorporated into cooperative relaying providing extra degrees of freedom in selection, thus improving various performance metrics, such as outage probability, power reduction, and throughput, at the expense of tolerating an increase in packet delay. In this survey, we review and classify various buffer-aided relay selection policies and discuss their importance through applications. The classification is mainly based on the following aspects: 1) duplexing capabilities, 2) channel state information (CSI), 3) transmission strategies, 4) relay mode, and 5) performance metrics. Relay selection policies for enhanced physical-layer security and cognitive communications with reduced interference are also discussed. Then, a framework for modeling such algorithms is presented based on Markov Chain theory. In addition, performance evaluation is conducted for various buffer-aided relay selection algorithms. To provide a broad perspective on the role of buffer-aided relay selection, various issues relevant to fifth-generation (5G) networks are discussed. Finally, we draw conclusion and discuss current challenges, possible future directions, and emerging technologies.

128 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: A survey of cloud computing is presented, highlighting its key concepts, architectural principles, state-of-the-art implementation as well as research challenges to provide a better understanding of the design challenges of cloud Computing and identify important research directions in this increasingly important area.
Abstract: Cloud computing has recently emerged as a new paradigm for hosting and delivering services over the Internet. Cloud computing is attractive to business owners as it eliminates the requirement for users to plan ahead for provisioning, and allows enterprises to start from the small and increase resources only when there is a rise in service demand. However, despite the fact that cloud computing offers huge opportunities to the IT industry, the development of cloud computing technology is currently at its infancy, with many issues still to be addressed. In this paper, we present a survey of cloud computing, highlighting its key concepts, architectural principles, state-of-the-art implementation as well as research challenges. The aim of this paper is to provide a better understanding of the design challenges of cloud computing and identify important research directions in this increasingly important area.

3,465 citations

Journal ArticleDOI

2,415 citations

Posted Content
TL;DR: This paper proposes gradient descent algorithms for a class of utility functions which encode optimal coverage and sensing policies which are adaptive, distributed, asynchronous, and verifiably correct.
Abstract: This paper presents control and coordination algorithms for groups of vehicles. The focus is on autonomous vehicle networks performing distributed sensing tasks where each vehicle plays the role of a mobile tunable sensor. The paper proposes gradient descent algorithms for a class of utility functions which encode optimal coverage and sensing policies. The resulting closed-loop behavior is adaptive, distributed, asynchronous, and verifiably correct.

2,198 citations

01 Jan 2014
TL;DR: Using Language部分的�’学模式既不落俗套,又能真正体现新课程标准所倡导的�'学理念,正是年努力探索的问题.
Abstract: 人教版高中英语新课程教材中,语言运用(Using Language)是每个单元必不可少的部分,提供了围绕单元中心话题的听、说、读、写的综合性练习,是单元中心话题的延续和升华.如何设计Using Language部分的教学,使自己的教学模式既不落俗套,又能真正体现新课程标准所倡导的教学理念,正是广大一线英语教师一直努力探索的问题.

2,071 citations

Journal ArticleDOI
01 Dec 2014
TL;DR: This work proposes a classification of techniques for automating application scaling in the cloud into five main categories: static threshold-based rules, control theory, reinforcement learning, queuing theory and time series analysis, and uses this classification to carry out a literature review of proposals.
Abstract: Cloud computing environments allow customers to dynamically scale their applications. The key problem is how to lease the right amount of resources, on a pay-as-you-go basis. Application re-dimensioning can be implemented effortlessly, adapting the resources assigned to the application to the incoming user demand. However, the identification of the right amount of resources to lease in order to meet the required Service Level Agreement, while keeping the overall cost low, is not an easy task. Many techniques have been proposed for automating application scaling. We propose a classification of these techniques into five main categories: static threshold-based rules, control theory, reinforcement learning, queuing theory and time series analysis. Then we use this classification to carry out a literature review of proposals for auto-scaling in the cloud.

688 citations