scispace - formally typeset
Search or ask a question
Author

Theo Wallimann

Bio: Theo Wallimann is an academic researcher from ETH Zurich. The author has contributed to research in topics: Creatine kinase & Creatine. The author has an hindex of 76, co-authored 281 publications receiving 21505 citations. Previous affiliations of Theo Wallimann include École Polytechnique Fédérale de Lausanne & Johns Hopkins University.


Papers
More filters
Journal ArticleDOI
TL;DR: The results identify a link between two protein kinases, previously thought to lie in unrelated, distinct pathways, that are associated with human diseases.

1,602 citations

Journal ArticleDOI
TL;DR: Under situations of compromised cellular energy state, two characteristics of mitochondrial creatine kinase are particularly relevant: its exquisite susceptibility to oxidative modifications and the compensatory up-regulation of its gene expression, in some cases leading to accumulation of crystalline MtCK inclusion bodies in mitochondria that are the clinical hallmarks for mitochondrial cytopathies.

561 citations

Journal ArticleDOI
TL;DR: The stimulating effects of Cr for muscle and bone growth and maintenance, and especially in neuroprotection, are now recognized and the first clinical studies are underway.
Abstract: The pleiotropic effects of creatine (Cr) are based mostly on the functions of the enzyme creatine kinase (CK) and its high-energy product phosphocreatine (PCr). Multidisciplinary studies have established molecular, cellular, organ and somatic functions of the CK/PCr system, in particular for cells and tissues with high and intermittent energy fluctuations. These studies include tissue-specific expression and subcellular localization of CK isoforms, high-resolution molecular structures and structure-function relationships, transgenic CK abrogation and reverse genetic approaches. Three energy-related physiological principles emerge, namely that the CK/PCr systems functions as (a) an immediately available temporal energy buffer, (b) a spatial energy buffer or intracellular energy transport system (the CK/PCr energy shuttle or circuit) and (c) a metabolic regulator. The CK/PCr energy shuttle connects sites of ATP production (glycolysis and mitochondrial oxidative phosphorylation) with subcellular sites of ATP utilization (ATPases). Thus, diffusion limitations of ADP and ATP are overcome by PCr/Cr shuttling, as most clearly seen in polar cells such as spermatozoa, retina photoreceptor cells and sensory hair bundles of the inner ear. The CK/PCr system relies on the close exchange of substrates and products between CK isoforms and ATP-generating or -consuming processes. Mitochondrial CK in the mitochondrial outer compartment, for example, is tightly coupled to ATP export via adenine nucleotide transporter or carrier (ANT) and thus ATP-synthesis and respiratory chain activity, releasing PCr into the cytosol. This coupling also reduces formation of reactive oxygen species (ROS) and inhibits mitochondrial permeability transition, an early event in apoptosis. Cr itself may also act as a direct and/or indirect anti-oxidant, while PCr can interact with and protect cellular membranes. Collectively, these factors may well explain the beneficial effects of Cr supplementation. The stimulating effects of Cr for muscle and bone growth and maintenance, and especially in neuroprotection, are now recognized and the first clinical studies are underway. Novel socio-economically relevant applications of Cr supplementation are emerging, e.g. for senior people, intensive care units and dialysis patients, who are notoriously Cr-depleted. Also, Cr will likely be beneficial for the healthy development of premature infants, who after separation from the placenta depend on external Cr. Cr supplementation of pregnant and lactating women, as well as of babies and infants are likely to be of benefit for child development. Last but not least, Cr harbours a global ecological potential as an additive for animal feed, replacing meat- and fish meal for animal (poultry and swine) and fish aqua farming. This may help to alleviate human starvation and at the same time prevent over-fishing of oceans.

532 citations

Journal ArticleDOI
TL;DR: Results show a 1000-fold activation of AMPK by the combined effects of upstream kinase and saturating concentrations of AMP and evidence is provided that ZMP, a compound formed in 5-aminoimidazole-4-carboxamide-1-β-d-ribofuranoside-treated cells to activate AMPK in vivo, allosterically activates purified AM PK in vitro, but compared with AMP, maximal activity is not reached.

464 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Current evidence indicates that most of the cytotoxicity attributed to NO is rather due to peroxynitrite, produced from the diffusion-controlled reaction between NO and another free radical, the superoxide anion, which is presented in detail in this review.
Abstract: The discovery that mammalian cells have the ability to synthesize the free radical nitric oxide (NO) has stimulated an extraordinary impetus for scientific research in all the fields of biology and medicine. Since its early description as an endothelial-derived relaxing factor, NO has emerged as a fundamental signaling device regulating virtually every critical cellular function, as well as a potent mediator of cellular damage in a wide range of conditions. Recent evidence indicates that most of the cytotoxicity attributed to NO is rather due to peroxynitrite, produced from the diffusion-controlled reaction between NO and another free radical, the superoxide anion. Peroxynitrite interacts with lipids, DNA, and proteins via direct oxidative reactions or via indirect, radical-mediated mechanisms. These reactions trigger cellular responses ranging from subtle modulations of cell signaling to overwhelming oxidative injury, committing cells to necrosis or apoptosis. In vivo, peroxynitrite generation represents a crucial pathogenic mechanism in conditions such as stroke, myocardial infarction, chronic heart failure, diabetes, circulatory shock, chronic inflammatory diseases, cancer, and neurodegenerative disorders. Hence, novel pharmacological strategies aimed at removing peroxynitrite might represent powerful therapeutic tools in the future. Evidence supporting these novel roles of NO and peroxynitrite is presented in detail in this review.

5,514 citations

Journal ArticleDOI
TL;DR: AMP-activated protein kinase conserves ATP levels through the regulation of processes other than metabolism, such as the cell cycle and neuronal membrane excitability.
Abstract: AMP-activated protein kinase (AMPK) is a crucial cellular energy sensor. Once activated by falling energy status, it promotes ATP production by increasing the activity or expression of proteins involved in catabolism while conserving ATP by switching off biosynthetic pathways. AMPK also regulates metabolic energy balance at the whole-body level. For example, it mediates the effects of agents acting on the hypothalamus that promote feeding and entrains circadian rhythms of metabolism and feeding behaviour. Finally, recent studies reveal that AMPK conserves ATP levels through the regulation of processes other than metabolism, such as the cell cycle and neuronal membrane excitability.

3,465 citations

Journal ArticleDOI
TL;DR: Once MMP has been induced, it causes the release of catabolic hydrolases and activators of such enzymes (including those of caspases) from mitochondria, meaning that mitochondria coordinate the late stage of cellular demise.
Abstract: Irrespective of the morphological features of end-stage cell death (that may be apoptotic, necrotic, autophagic, or mitotic), mitochondrial membrane permeabilization (MMP) is frequently the decisive event that delimits the frontier between survival and death. Thus mitochondrial membranes constitute the battleground on which opposing signals combat to seal the cell's fate. Local players that determine the propensity to MMP include the pro- and antiapoptotic members of the Bcl-2 family, proteins from the mitochondrialpermeability transition pore complex, as well as a plethora of interacting partners including mitochondrial lipids. Intermediate metabolites, redox processes, sphingolipids, ion gradients, transcription factors, as well as kinases and phosphatases link lethal and vital signals emanating from distinct subcellular compartments to mitochondria. Thus mitochondria integrate a variety of proapoptotic signals. Once MMP has been induced, it causes the release of catabolic hydrolases and activators of such enzymes (including those of caspases) from mitochondria. These catabolic enzymes as well as the cessation of the bioenergetic and redox functions of mitochondria finally lead to cell death, meaning that mitochondria coordinate the late stage of cellular demise. Pathological cell death induced by ischemia/reperfusion, intoxication with xenobiotics, neurodegenerative diseases, or viral infection also relies on MMP as a critical event. The inhibition of MMP constitutes an important strategy for the pharmaceutical prevention of unwarranted cell death. Conversely, induction of MMP in tumor cells constitutes the goal of anticancer chemotherapy.

3,340 citations

Journal ArticleDOI
TL;DR: An overview of issues confirms that anthracyclines remain “evergreen” drugs with broad clinical indications but have still an improvable therapeutic index.
Abstract: The clinical use of anthracyclines like doxorubicin and daunorubicin can be viewed as a sort of double-edged sword. On the one hand, anthracyclines play an undisputed key role in the treatment of many neoplastic diseases; on the other hand, chronic administration of anthracyclines induces cardiomyopathy and congestive heart failure usually refractory to common medications. Second-generation analogs like epirubicin or idarubicin exhibit improvements in their therapeutic index, but the risk of inducing cardiomyopathy is not abated. It is because of their janus behavior (activity in tumors vis-a-vis toxicity in cardiomyocytes) that anthracyclines continue to attract the interest of preclinical and clinical investigations despite their longer-than-40-year record of longevity. Here we review recent progresses that may serve as a framework for reappraising the activity and toxicity of anthracyclines on basic and clinical pharmacology grounds. We review 1) new aspects of anthracycline-induced DNA damage in cancer cells; 2) the role of iron and free radicals as causative factors of apoptosis or other forms of cardiac damage; 3) molecular mechanisms of cardiotoxic synergism between anthracyclines and other anticancer agents; 4) the pharmacologic rationale and clinical recommendations for using cardioprotectants while not interfering with tumor response; 5) the development of tumor-targeted anthracycline formulations; and 6) the designing of third-generation analogs and their assessment in preclinical or clinical settings. An overview of these issues confirms that anthracyclines remain "evergreen" drugs with broad clinical indications but have still an improvable therapeutic index.

3,320 citations

Journal ArticleDOI
TL;DR: A major unifying thread of the review is a consideration of how the changes occurring during and after ischemia conspire to produce damaging levels of free radicals and peroxynitrite to activate calpain and other Ca(2+)-driven processes that are damaging, and to initiate the apoptotic process.
Abstract: This review is directed at understanding how neuronal death occurs in two distinct insults, global ischemia and focal ischemia. These are the two principal rodent models for human disease. Cell dea...

2,960 citations