scispace - formally typeset
Search or ask a question
Author

Theodore I. Kamins

Bio: Theodore I. Kamins is an academic researcher from Stanford University. The author has contributed to research in topics: Silicon & Nanowire. The author has an hindex of 67, co-authored 474 publications receiving 19482 citations. Previous affiliations of Theodore I. Kamins include University of California, Los Angeles & National Institute for Nanotechnology.


Papers
More filters
Book
01 Jan 1986
TL;DR: In this article, the authors present a list of symbols for metal-oxide-silicon systems, including Mos Field-effect transistors, high-field effects, and high-frequency effects.
Abstract: Semiconductor Electronics. Silicon Technology. Metal--Semiconductor Contacts. pn Junctions. Currents in pn Junctions. Bipolar Transistors I: Basic Properties. Bipolar Transistors II: Limitations and Models. Properties of the Metal--Oxide--Silicon System. Mos Field--Effect Transistors I: Physical Effects and Models. Mos Field--Effect Transistors II: High--Field Effects. Answers to Selected Problems. Selected List of Symbols. Index.

1,376 citations

Journal ArticleDOI
Zhiyong Li1, Yong Chen1, Xuema Li1, Theodore I. Kamins1, K. Nauka1, R.S. Williams1 
TL;DR: Highly sensitive and sequence-specific DNA sensors were fabricated based on silicon nanowires with single stranded probe DNA molecules covalently immobilized on the nanowire surfaces, recognizing label-free complementary ss-DNA in sample solutions when the target DNA was hybridized with the probe DNA attached on the SiNW surfaces.
Abstract: Highly sensitive and sequence-specific DNA sensors were fabricated based on silicon nanowires (SiNWs) with single stranded (ss) probe DNA molecules covalently immobilized on the nanowire surfaces. Label-free complementary (target) ss-DNA in sample solutions were recognized when the target DNA was hybridized with the probe DNA attached on the SiNW surfaces, producing a change of the conductance of the SiNWs. For a 12-mer oligonucletide probe, 25 pM of target DNA in solution was detected easily (signal/noise ratio > 6), whereas 12-mers with one base mismatch did not produce a signal above the background noise.

805 citations

Journal ArticleDOI
27 Oct 2005-Nature
TL;DR: The discovery of the QCSE, at room temperature, in thin germanium quantum-well structures grown on silicon is very promising for small, high-speed, low-power optical output devices fully compatible with silicon electronics manufacture.
Abstract: Silicon chips dominate electronics while optical fibres dominate long-distance information transfer. Recent work, in search of the best of both worlds, has led to silicon devices capable of modulating light; these show promise but still rely on weak physical mechanisms found in silicon itself. Now a team working at Stanford University and at Hewlett-Packard's Palo Alto labs has developed thin germanium ‘quantum well’ nanostructures grown on silicon that generate a strong quantum-mechanical effect capable of turning light beams on and off. Their performance rivals the best seen in any material. This development may allow silicon/germanium chips to handle both electronics and optics, uniting computing and communications at the integrated chip level. Silicon is the dominant semiconductor for electronics, but there is now a growing need to integrate such components with optoelectronics for telecommunications and computer interconnections1. Silicon-based optical modulators have recently been successfully demonstrated2,3; but because the light modulation mechanisms in silicon4 are relatively weak, long (for example, several millimetres) devices2 or sophisticated high-quality-factor resonators3 have been necessary. Thin quantum-well structures made from III-V semiconductors such as GaAs, InP and their alloys exhibit the much stronger quantum-confined Stark effect (QCSE) mechanism5, which allows modulator structures with only micrometres of optical path length6,7. Such III-V materials are unfortunately difficult to integrate with silicon electronic devices. Germanium is routinely integrated with silicon in electronics8, but previous silicon–germanium structures have also not shown strong modulation effects9,10,11,12,13. Here we report the discovery of the QCSE, at room temperature, in thin germanium quantum-well structures grown on silicon. The QCSE here has strengths comparable to that in III-V materials. Its clarity and strength are particularly surprising because germanium is an indirect gap semiconductor; such semiconductors often display much weaker optical effects than direct gap materials (such as the III-V materials typically used for optoelectronics). This discovery is very promising for small, high-speed14, low-power15,16,17 optical output devices fully compatible with silicon electronics manufacture.

789 citations

Book
01 Jan 1977
TL;DR: In this paper, the authors present a list of symbols for metal-oxide-silicon systems, including Mos Field-effect transistors, high-field effects, and high-frequency effects.
Abstract: Semiconductor Electronics. Silicon Technology. Metal--Semiconductor Contacts. pn Junctions. Currents in pn Junctions. Bipolar Transistors I: Basic Properties. Bipolar Transistors II: Limitations and Models. Properties of the Metal--Oxide--Silicon System. Mos Field--Effect Transistors I: Physical Effects and Models. Mos Field--Effect Transistors II: High--Field Effects. Answers to Selected Problems. Selected List of Symbols. Index.

766 citations

Journal ArticleDOI
16 Jan 1998-Science
TL;DR: In situ scanning tunneling microscopy revealed that the smaller square-based pyramids transform abruptly during growth to significantly larger multifaceted domes, and that few structures with intermediate size and shape remain.
Abstract: Chemical vapor deposition of germanium onto the silicon (001) surface at atmospheric pressure and 600 degrees Celsius has previously been shown to produce distinct families of smaller (up to 6 nanometers high) and larger (all approximately 15 nanometers high) nanocrystals. Under ultrahigh-vacuum conditions, physical vapor deposition at approximately the same substrate temperature and growth rate produced a similar bimodal size distribution. In situ scanning tunneling microscopy revealed that the smaller square-based pyramids transform abruptly during growth to significantly larger multifaceted domes, and that few structures with intermediate size and shape remain. Both nanocrystal shapes have size-dependent energy minima that result from the interplay between strain relaxation at the facets and stress concentration at the edges. A thermodynamic model similar to a phase transition accounts for this abrupt morphology change.

736 citations


Cited by
More filters
Journal ArticleDOI
02 Jun 2011-Nature
TL;DR: Graphene-based optical modulation mechanism, with combined advantages of compact footprint, low operation voltage and ultrafast modulation speed across a broad range of wavelengths, can enable novel architectures for on-chip optical communications.
Abstract: Graphene, the single-atom-thick form of carbon, holds promise for many applications, notably in electronics where it can complement or be integrated with silicon-based devices. Intense efforts have been devoted to develop a key enabling device, a broadband, fast optical modulator with a small device footprint. Now Liu et al. demonstrate an exciting new possibility for graphene in the area of on-chip optical communication: a graphene-based optical modulator integrated with a silicon chip. This new device relies on the electrical tuning of the Fermi level of the graphene sheet, and achieves modulation of guided light at frequencies over 1 gigahertz, together with a broad operating spectrum. At just 25 square micrometres in area, it is one of the smallest of its type. Integrated optical modulators with high modulation speed, small footprint and large optical bandwidth are poised to be the enabling devices for on-chip optical interconnects1,2. Semiconductor modulators have therefore been heavily researched over the past few years. However, the device footprint of silicon-based modulators is of the order of millimetres, owing to its weak electro-optical properties3. Germanium and compound semiconductors, on the other hand, face the major challenge of integration with existing silicon electronics and photonics platforms4,5,6. Integrating silicon modulators with high-quality-factor optical resonators increases the modulation strength, but these devices suffer from intrinsic narrow bandwidth and require sophisticated optical design; they also have stringent fabrication requirements and limited temperature tolerances7. Finding a complementary metal-oxide-semiconductor (CMOS)-compatible material with adequate modulation speed and strength has therefore become a task of not only scientific interest, but also industrial importance. Here we experimentally demonstrate a broadband, high-speed, waveguide-integrated electroabsorption modulator based on monolayer graphene. By electrically tuning the Fermi level of the graphene sheet, we demonstrate modulation of the guided light at frequencies over 1 GHz, together with a broad operation spectrum that ranges from 1.35 to 1.6 µm under ambient conditions. The high modulation efficiency of graphene results in an active device area of merely 25 µm2, which is among the smallest to date. This graphene-based optical modulation mechanism, with combined advantages of compact footprint, low operation voltage and ultrafast modulation speed across a broad range of wavelengths, can enable novel architectures for on-chip optical communications.

3,105 citations

Book
Yuan Taur1, Tak H. Ning1
01 Jan 2016
TL;DR: In this article, the authors highlight the intricate interdependencies and subtle tradeoffs between various practically important device parameters, and also provide an in-depth discussion of device scaling and scaling limits of CMOS and bipolar devices.
Abstract: Learn the basic properties and designs of modern VLSI devices, as well as the factors affecting performance, with this thoroughly updated second edition. The first edition has been widely adopted as a standard textbook in microelectronics in many major US universities and worldwide. The internationally-renowned authors highlight the intricate interdependencies and subtle tradeoffs between various practically important device parameters, and also provide an in-depth discussion of device scaling and scaling limits of CMOS and bipolar devices. Equations and parameters provided are checked continuously against the reality of silicon data, making the book equally useful in practical transistor design and in the classroom. Every chapter has been updated to include the latest developments, such as MOSFET scale length theory, high-field transport model, and SiGe-base bipolar devices.

2,680 citations

Journal ArticleDOI
TL;DR: In this article, Boron doses of 1×1012-5×1015/cm2 were implanted at 60 keV into 1-μm-thick polysilicon films and Hall and resistivity measurements were made over a temperature range −50-250 °C.
Abstract: Boron doses of 1×1012–5×1015/cm2 were implanted at 60 keV into 1‐μm‐thick polysilicon films. After annealing at 1100 °C for 30 min, Hall and resistivity measurements were made over a temperature range −50–250 °C. It was found that as a function of doping concentration, the Hall mobility showed a minimum at about 2×1018/cm3 doping. The electrical activation energy was found to be about half the energy gap value of single‐crystalline silicon for lightly doped samples and decreased to less than 0.025 eV at a doping of 1×1019/cm3. The carrier concentration was very small at doping levels below 5×1017/cm3 and increased rapidly as the doping concentration was increased. At 1×1019/cm3 doping, the carrier concentration was about 90% of the doping concentration. A grain‐boundary model including the trapping states was proposed. Carrier concentration and mobility as a function of doping concentration and the mobility and resistivity as a function of temperature were calculated from the model. The theoretical and ex...

2,657 citations

Journal ArticleDOI
TL;DR: A review of electronic devices based on two-dimensional materials, outlining their potential as a technological option beyond scaled complementary metal-oxide-semiconductor switches and the performance limits and advantages, when exploited for both digital and analog applications.
Abstract: The compelling demand for higher performance and lower power consumption in electronic systems is the main driving force of the electronics industry's quest for devices and/or architectures based on new materials. Here, we provide a review of electronic devices based on two-dimensional materials, outlining their potential as a technological option beyond scaled complementary metal-oxide-semiconductor switches. We focus on the performance limits and advantages of these materials and associated technologies, when exploited for both digital and analog applications, focusing on the main figures of merit needed to meet industry requirements. We also discuss the use of two-dimensional materials as an enabling factor for flexible electronics and provide our perspectives on future developments.

2,531 citations

Journal ArticleDOI
TL;DR: This review describes recent advances in the synthesis of biomolecule-nanoparticle/nanorod hybrid systems and the application of such assemblies in the generation of 2D and 3D ordered structures in solutions and on surfaces.
Abstract: Nanomaterials, such as metal or semiconductor nanoparticles and nanorods, exhibit similar dimensions to those of biomolecules, such as proteins (enzymes, antigens, antibodies) or DNA. The integration of nanoparticles, which exhibit unique electronic, photonic, and catalytic properties, with biomaterials, which display unique recognition, catalytic, and inhibition properties, yields novel hybrid nanobiomaterials of synergetic properties and functions. This review describes recent advances in the synthesis of biomolecule-nanoparticle/nanorod hybrid systems and the application of such assemblies in the generation of 2D and 3D ordered structures in solutions and on surfaces. Particular emphasis is directed to the use of biomolecule-nanoparticle (metallic or semiconductive) assemblies for bioanalytical applications and for the fabrication of bioelectronic devices.

2,334 citations