scispace - formally typeset
Search or ask a question
Author

Theodore S. Rappaport

Bio: Theodore S. Rappaport is an academic researcher from New York University. The author has contributed to research in topics: Path loss & Multipath propagation. The author has an hindex of 112, co-authored 490 publications receiving 68853 citations. Previous affiliations of Theodore S. Rappaport include University of Waterloo & University of Texas at Austin.


Papers
More filters
Proceedings ArticleDOI
09 Feb 2014
TL;DR: A step-by-step procedure for generating channel coefficients is shown to validate measured statistics from 28 GHz field measurements, thus validating the statistical channel model, for use in standard bodies and system-level simulations for millimeter-wave wideband communications.
Abstract: This paper presents ultra-wideband statistical spatial and omnidirectional channel models for 28 GHz millimeter-wave cellular dense urban Non-Line of Sight (NLOS) environments, developed from wideband measurements in New York City that used synthesized timing from 3D ray-tracing. An accurate 3GPP-like channel model has been developed, where model parameters are based on empirical distributions for time cluster and spatial (lobe) channel parameters. A statistical simulator capable of reproducing the joint temporal and spatial measured channel statistics is given here. A step-by-step procedure for generating channel coefficients is shown to validate measured statistics from 28 GHz field measurements, thus validating our statistical channel model, for use in standard bodies and system-level simulations for millimeter-wave wideband communications.

130 citations

Journal ArticleDOI
TL;DR: In this article, the authors provided similar correction factors for models at 60 GHz and 73 GHz, by imparting slope correction factors on the theoretical free space (FS) and SUI path loss models to closely match the close-in (CI) free space reference distance path loss model.
Abstract: Fifth-generation (5G) cellular systems are likely to operate in the centimeter-wave (3–30 GHz) and millimeter-wave (30–300 GHz) frequency bands, where a vast amount of underutilized bandwidth exists world-wide. To assist in the research and development of these emerging wireless systems, a myriad of measurement studies have been conducted to characterize path loss in urban environments at these frequencies. The standard theoretical free space (FS) and Stanford University Interim (SUI) empirical path loss models were recently modified to fit path loss models obtained from measurements performed at 28 GHz and 38 GHz, using simple correction factors. In this paper, we provide similar correction factors for models at 60 GHz and 73 GHz. By imparting slope correction factors on the FS and SUI path loss models to closely match the close-in (CI) free space reference distance path loss models, millimeter-wave path loss can be accurately estimated (with popular models) for 5G cellular planning at 60 GHz and 73 GHz. Additionally, new millimeter-wave beam combining path loss models are provided at 28 GHz and 73 GHz by considering the simultaneous combination of signals from multiple antenna pointing directions between the transmitter and receiver that result in the strongest received power. Such directional channel models are important for future adaptive array systems at millimeter-wave frequencies.

129 citations

Proceedings ArticleDOI
25 Jun 2014
TL;DR: New omnidirectional close-in free space reference distance and floating intercept path loss models obtained from 28 GHz and 73 GHz RF ultrawideband propagation measurements collected in Downtown Manhattan using a 400 Mega-chip-per-second sliding correlator channel sounder are presented.
Abstract: This paper presents newly generated omnidirectional close-in free space reference distance and floating intercept path loss models obtained from 28 GHz and 73 GHz RF ultrawideband propagation measurements collected in Downtown Manhattan using a 400 Mega-chip-per-second sliding correlator channel sounder Simplified path loss models with respect to a 1 m close-in free space reference distance are provided here for the omnidirectional propagation models, and are suitable for system-wide simulations similar to 3GPP and WINNER II Measured path loss exponents at millimeter-wave and current UHF/Microwave cellular frequencies are very similar The significant difference in large-scale path loss between UHF and millimeter-wave channels is the extra free space attenuation due to the increase in carrier frequency

129 citations

Journal ArticleDOI
TL;DR: In this paper, an indoor 3D spatial channel model for mmWave and sub-THz frequencies based on extensive radio propagation measurements at 28 and 140 GHz conducted in an indoor office environment from 2014 to 2020 is presented.
Abstract: Millimeter-wave (mmWave) and sub-Terahertz (THz) frequencies are expected to play a vital role in 6G wireless systems and beyond due to the vast available bandwidth of many tens of GHz. This paper presents an indoor 3-D spatial statistical channel model for mmWave and sub-THz frequencies based on extensive radio propagation measurements at 28 and 140 GHz conducted in an indoor office environment from 2014 to 2020. Omnidirectional and directional path loss models and channel statistics such as the number of time clusters, cluster delays, and cluster powers were derived from over 15,000 measured power delay profiles. The resulting channel statistics show that the number of time clusters follows a Poisson distribution and the number of subpaths within each cluster follows a composite exponential distribution for both LOS and NLOS environments at 28 and 140 GHz. This paper proposes a unified indoor statistical channel model for mmWave and sub-Terahertz frequencies following the mathematical framework of the previous outdoor NYUSIM channel models. A corresponding indoor channel simulator is developed, which can recreate 3-D omnidirectional, directional, and multiple input multiple output (MIMO) channels for arbitrary mmWave and sub-THz carrier frequency up to 150 GHz, signal bandwidth, and antenna beamwidth. The presented statistical channel model and simulator will guide future air-interface, beamforming, and transceiver designs for 6G and beyond.

129 citations

Journal ArticleDOI
TL;DR: The objective of the research was to determine multipath and time varying channel behavior of short-hop millimeter-wave point-to-multipoint radio links during various weather events, and a novel prediction technique is presented that applies canonical antenna patterns and site specific information to estimate worst case multipath channel characteristics.
Abstract: This article presents results of a wide-band measurement campaign conducted at 38 GHz. The objective of the research was to determine multipath and time varying channel behavior of short-hop millimeter-wave point-to-multipoint radio links during various weather events. 73963 power delay profiles (PDPs) were captured on three links, each comparable to proposed local multipoint distribution systems (LMDS) in a campus environment. Multipath was observed in unobstructed LOS links during rain but not during clear weather. Short-term variation of the received signal over 1-2 min observation periods is described by a Rician distribution with a K factor which varies as a function of rain rate. Measured rain attenuation exceeds Crane's (1996) model predictions by several decibels. A novel prediction technique is presented that applies canonical antenna patterns and site specific information to estimate worst case multipath channel characteristics including relative power, time of arrival (TOA), and angle of arrival (AOA) of each multipath component. New metrics, the excess delay zone and relative power zone, are defined and contour plots are developed to determine potential reflectors from an area site map. These results and models provide useful guidelines for the design of millimeter-wave wireless communication systems.

129 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Journal ArticleDOI
TL;DR: The concept of sensor networks which has been made viable by the convergence of micro-electro-mechanical systems technology, wireless communications and digital electronics is described.

17,936 citations

Journal ArticleDOI
TL;DR: Using distributed antennas, this work develops and analyzes low-complexity cooperative diversity protocols that combat fading induced by multipath propagation in wireless networks and develops performance characterizations in terms of outage events and associated outage probabilities, which measure robustness of the transmissions to fading.
Abstract: We develop and analyze low-complexity cooperative diversity protocols that combat fading induced by multipath propagation in wireless networks. The underlying techniques exploit space diversity available through cooperating terminals' relaying signals for one another. We outline several strategies employed by the cooperating radios, including fixed relaying schemes such as amplify-and-forward and decode-and-forward, selection relaying schemes that adapt based upon channel measurements between the cooperating terminals, and incremental relaying schemes that adapt based upon limited feedback from the destination terminal. We develop performance characterizations in terms of outage events and associated outage probabilities, which measure robustness of the transmissions to fading, focusing on the high signal-to-noise ratio (SNR) regime. Except for fixed decode-and-forward, all of our cooperative diversity protocols are efficient in the sense that they achieve full diversity (i.e., second-order diversity in the case of two terminals), and, moreover, are close to optimum (within 1.5 dB) in certain regimes. Thus, using distributed antennas, we can provide the powerful benefits of space diversity without need for physical arrays, though at a loss of spectral efficiency due to half-duplex operation and possibly at the cost of additional receive hardware. Applicable to any wireless setting, including cellular or ad hoc networks-wherever space constraints preclude the use of physical arrays-the performance characterizations reveal that large power or energy savings result from the use of these protocols.

12,761 citations

Journal ArticleDOI
Simon Haykin1
TL;DR: Following the discussion of interference temperature as a new metric for the quantification and management of interference, the paper addresses three fundamental cognitive tasks: radio-scene analysis, channel-state estimation and predictive modeling, and the emergent behavior of cognitive radio.
Abstract: Cognitive radio is viewed as a novel approach for improving the utilization of a precious natural resource: the radio electromagnetic spectrum. The cognitive radio, built on a software-defined radio, is defined as an intelligent wireless communication system that is aware of its environment and uses the methodology of understanding-by-building to learn from the environment and adapt to statistical variations in the input stimuli, with two primary objectives in mind: /spl middot/ highly reliable communication whenever and wherever needed; /spl middot/ efficient utilization of the radio spectrum. Following the discussion of interference temperature as a new metric for the quantification and management of interference, the paper addresses three fundamental cognitive tasks. 1) Radio-scene analysis. 2) Channel-state estimation and predictive modeling. 3) Transmit-power control and dynamic spectrum management. This work also discusses the emergent behavior of cognitive radio.

12,172 citations

Journal ArticleDOI
TL;DR: This work develops and analyzes low-energy adaptive clustering hierarchy (LEACH), a protocol architecture for microsensor networks that combines the ideas of energy-efficient cluster-based routing and media access together with application-specific data aggregation to achieve good performance in terms of system lifetime, latency, and application-perceived quality.
Abstract: Networking together hundreds or thousands of cheap microsensor nodes allows users to accurately monitor a remote environment by intelligently combining the data from the individual nodes. These networks require robust wireless communication protocols that are energy efficient and provide low latency. We develop and analyze low-energy adaptive clustering hierarchy (LEACH), a protocol architecture for microsensor networks that combines the ideas of energy-efficient cluster-based routing and media access together with application-specific data aggregation to achieve good performance in terms of system lifetime, latency, and application-perceived quality. LEACH includes a new, distributed cluster formation technique that enables self-organization of large numbers of nodes, algorithms for adapting clusters and rotating cluster head positions to evenly distribute the energy load among all the nodes, and techniques to enable distributed signal processing to save communication resources. Our results show that LEACH can improve system lifetime by an order of magnitude compared with general-purpose multihop approaches.

10,296 citations