scispace - formally typeset
Search or ask a question
Author

Theodore S. Rappaport

Bio: Theodore S. Rappaport is an academic researcher from New York University. The author has contributed to research in topics: Path loss & Multipath propagation. The author has an hindex of 112, co-authored 490 publications receiving 68853 citations. Previous affiliations of Theodore S. Rappaport include University of Waterloo & University of Texas at Austin.


Papers
More filters
Patent
17 Dec 2001
TL;DR: In this paper, a computerized system allows for collecting data for a spatially distributed group of objects or networks by either skilled or unskilled personnel and for analyzing the collected data in an environmental database.
Abstract: A computerized system allows for collecting data for a spatially distributed group of objects or networks by either skilled or unskilled personnel and for analyzing the collected data in an environmental database.

106 citations

Patent
21 Sep 2001
TL;DR: A method for engineering management and planning for the design of a communications network in three-dimensions (70) which combines computerized organization, database fusion, and site-specific communication system performance prediction models is presented in this paper.
Abstract: A method for engineering management and planning for the design of a communications network in three-dimensions (70) which combines computerized organization, database fusion, and site-specific communication system performance prediction models (70, 90, 100, 110, 120, 130). Various metrics are used to optimise the layout, placement and design of the communications network (90, 130).

105 citations

Proceedings ArticleDOI
TL;DR: In this article, the authors present key parameters including the line-of-sight (LOS) probability, large-scale path loss, and shadow fading models for the design of future 5G wireless communication systems in urban macrocellular (UMa) scenarios, using the data obtained from propagation measurements at 38 GHz in Austin, US, and at 2, 10, 18, and 28 GHz in Aalborg, Denmark.
Abstract: This paper presents key parameters including the line-of-sight (LOS) probability, large-scale path loss, and shadow fading models for the design of future fifth generation (5G) wireless communication systems in urban macro-cellular (UMa) scenarios, using the data obtained from propagation measurements at 38 GHz in Austin, US, and at 2, 10, 18, and 28 GHz in Aalborg, Denmark. A comparison of different LOS probability models is performed for the Aalborg environment. Alpha-betagamma and close-in reference distance path loss models are studied in depth to show their value in channel modeling. Additionally, both single-slope and dual-slope omnidirectional path loss models are investigated to analyze and contrast their root-mean-square (RMS) errors on measured path loss values. While the results show that the dual-slope large-scale path loss model can slightly reduce RMS errors compared to its singleslope counterpart in non-line-of-sight (NLOS) conditions, the improvement is not significant enough to warrant adopting the dual-slope path loss model. Furthermore, the shadow fading magnitude versus distance is explored, showing a slight increasing trend in LOS and a decreasing trend in NLOS based on the Aalborg data, but more measurements are necessary to gain a better knowledge of the UMa channels at centimeter- and millimeter-wave frequency bands.

104 citations

Proceedings ArticleDOI
25 Nov 2013
TL;DR: Data collected and processed from the measurements shows that strong received power can be achieved from the multipath-rich indoor environment, in the presence of multiple obstructions, and may be utilized for the design of future fifth generation millimeter wave indoor cellular systems.
Abstract: As the mobile cellular carriers are currently facing a spectrum crunch, researchers are concentrating on higher carrier frequency bands, such as E-band (71-76 GHz and 81-86 GHz) for the next generation wireless communication systems. The E-band is promising due to its large available, continuous bandwidth and robust weather resilience. In this paper, we demonstrate a spread spectrum sliding correlator channel sounder operating at a center frequency of 73.5 GHz with an 800 MHz null-to-null bandwidth. The channel sounder provides a multipath time resolution of 2.33 ns. 72 GHz millimeter wave propagation and penetration characteristics in an indoor office environment are investigated using the sliding correlator channel sounding system. Data collected and processed from the measurements shows that strong received power can be achieved from the multipath-rich indoor environment, in the presence of multiple obstructions. The data obtained from this measurement campaign may be utilized for the design of future fifth generation millimeter wave indoor cellular systems.

98 citations

Journal ArticleDOI
TL;DR: Results show that the coordination can improve network performance by suppressing interference when it exists, and that macrodiversity alone may offer sufficient link and capacity improvement and that CoMP may not be necessary for interference coordination at mmWave when narrow directional beams are used.
Abstract: Millimeter-wave (mmWave) will be used for fifth-generation (5G) wireless systems. While many recent empirical studies have presented propagation characteristics at mmWave bands, macrodiversity and Coordinated Multipoint (CoMP) have not been carefully studied. This paper describes a large-scale mmWave base station diversity measurement campaign at 73 GHz in an urban microcell (UMi) in downtown, Brooklyn, NY, USA, and provides the first detailed analysis of CoMP and macrodiversity performance based on extensive measurements. The research employed nine different base station locations in a 200 m by 200 m area and considered 36 individual transmitter–receiver combinations for extensive co- and cross-polarized varying directional beam channel impulse response measurements. From the measured data, hypothesis testing with cross-validation shows that large-scale shadow fading of directional path loss at an RX from multiple base stations can be modeled as being independent. To consider life-like human blockage in CoMP and macrodiversity analysis, simulated human blockage traces are superimposed on the directional measurements to quantitatively show that a user that is served by multiple base stations undergoes dramatically less outage in the presence of rapid fading events, compared to a single serving base station. Moreover, the base station diversity measurements are used to determine the effectiveness of downlink precoding techniques for mmWave CoMP. While results show that the coordination can improve network performance by suppressing interference when it exists, nearly half of the 680 000 directional CoMP measurements (~43%) result in no interference for either user, meaning that macrodiversity alone may offer sufficient link and capacity improvement and that CoMP may not be necessary for interference coordination at mmWave when narrow directional beams are used.

97 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Journal ArticleDOI
TL;DR: The concept of sensor networks which has been made viable by the convergence of micro-electro-mechanical systems technology, wireless communications and digital electronics is described.

17,936 citations

Journal ArticleDOI
TL;DR: Using distributed antennas, this work develops and analyzes low-complexity cooperative diversity protocols that combat fading induced by multipath propagation in wireless networks and develops performance characterizations in terms of outage events and associated outage probabilities, which measure robustness of the transmissions to fading.
Abstract: We develop and analyze low-complexity cooperative diversity protocols that combat fading induced by multipath propagation in wireless networks. The underlying techniques exploit space diversity available through cooperating terminals' relaying signals for one another. We outline several strategies employed by the cooperating radios, including fixed relaying schemes such as amplify-and-forward and decode-and-forward, selection relaying schemes that adapt based upon channel measurements between the cooperating terminals, and incremental relaying schemes that adapt based upon limited feedback from the destination terminal. We develop performance characterizations in terms of outage events and associated outage probabilities, which measure robustness of the transmissions to fading, focusing on the high signal-to-noise ratio (SNR) regime. Except for fixed decode-and-forward, all of our cooperative diversity protocols are efficient in the sense that they achieve full diversity (i.e., second-order diversity in the case of two terminals), and, moreover, are close to optimum (within 1.5 dB) in certain regimes. Thus, using distributed antennas, we can provide the powerful benefits of space diversity without need for physical arrays, though at a loss of spectral efficiency due to half-duplex operation and possibly at the cost of additional receive hardware. Applicable to any wireless setting, including cellular or ad hoc networks-wherever space constraints preclude the use of physical arrays-the performance characterizations reveal that large power or energy savings result from the use of these protocols.

12,761 citations

Journal ArticleDOI
Simon Haykin1
TL;DR: Following the discussion of interference temperature as a new metric for the quantification and management of interference, the paper addresses three fundamental cognitive tasks: radio-scene analysis, channel-state estimation and predictive modeling, and the emergent behavior of cognitive radio.
Abstract: Cognitive radio is viewed as a novel approach for improving the utilization of a precious natural resource: the radio electromagnetic spectrum. The cognitive radio, built on a software-defined radio, is defined as an intelligent wireless communication system that is aware of its environment and uses the methodology of understanding-by-building to learn from the environment and adapt to statistical variations in the input stimuli, with two primary objectives in mind: /spl middot/ highly reliable communication whenever and wherever needed; /spl middot/ efficient utilization of the radio spectrum. Following the discussion of interference temperature as a new metric for the quantification and management of interference, the paper addresses three fundamental cognitive tasks. 1) Radio-scene analysis. 2) Channel-state estimation and predictive modeling. 3) Transmit-power control and dynamic spectrum management. This work also discusses the emergent behavior of cognitive radio.

12,172 citations

Journal ArticleDOI
TL;DR: This work develops and analyzes low-energy adaptive clustering hierarchy (LEACH), a protocol architecture for microsensor networks that combines the ideas of energy-efficient cluster-based routing and media access together with application-specific data aggregation to achieve good performance in terms of system lifetime, latency, and application-perceived quality.
Abstract: Networking together hundreds or thousands of cheap microsensor nodes allows users to accurately monitor a remote environment by intelligently combining the data from the individual nodes. These networks require robust wireless communication protocols that are energy efficient and provide low latency. We develop and analyze low-energy adaptive clustering hierarchy (LEACH), a protocol architecture for microsensor networks that combines the ideas of energy-efficient cluster-based routing and media access together with application-specific data aggregation to achieve good performance in terms of system lifetime, latency, and application-perceived quality. LEACH includes a new, distributed cluster formation technique that enables self-organization of large numbers of nodes, algorithms for adapting clusters and rotating cluster head positions to evenly distribute the energy load among all the nodes, and techniques to enable distributed signal processing to save communication resources. Our results show that LEACH can improve system lifetime by an order of magnitude compared with general-purpose multihop approaches.

10,296 citations