scispace - formally typeset
Search or ask a question
Author

Theodore S. Rappaport

Bio: Theodore S. Rappaport is an academic researcher from New York University. The author has contributed to research in topics: Path loss & Multipath propagation. The author has an hindex of 112, co-authored 490 publications receiving 68853 citations. Previous affiliations of Theodore S. Rappaport include University of Waterloo & University of Texas at Austin.


Papers
More filters
Proceedings ArticleDOI
04 May 1997
TL;DR: In this article, a receiver system was developed to measure the time-varying nature of such "impulsive noise" in the 450 MHz band, and extensive measurements were made in hospitals and clinics across the United States.
Abstract: Electrical and mechanical equipment can be a major source of interference to indoor wireless systems. A receiver system was developed to measure the time-varying nature of such "impulsive noise" in the 450 MHz band, and extensive measurements were made in hospitals and clinics across the United States. Empirical distributions were extracted for the amplitude, inter-arrival time, and duration of the observed noise pulses. The software propagation simulation tool SIRCIM Plus was developed to include the simulation of impulsive noise in indoor environments, based on the measurements reported here.

80 citations

Proceedings ArticleDOI
01 Dec 2018
TL;DR: It is demonstrated that accurate estimates of the position of an unknown node can be determined using estimates of time of arrival, angle of arrival (AoA), as well as data fusion or machine learning.
Abstract: The vast amount of spectrum available for millimeter wave (mmWave) wireless communication systems will support accurate real-time positioning concurrent with communication signaling. This paper demonstrates that accurate estimates of the position of an unknown node can be determined using estimates of time of arrival (ToA), angle of arrival (AoA), as well as data fusion or machine learning. Real-world data at 28 GHz and 73 GHz is used to show that AoA-based localization techniques will need to be augmented with other positioning techniques. The fusion of AoA-based positioning with received power measurements for RXs in an office which has dimensions of 35 m by 65.5 m is shown to provide location accuracies ranging from 16 cm to 3.25 m, indicating promise for accurate positioning capabilities in future networks. Received signal strength intensity (RSSI) based positioning techniques that exploit the ordering of the received power can be used to determine rough estimates of user position. Prediction of received signal characteristics is done using 2-D ray tracing.

79 citations

Journal ArticleDOI
TL;DR: It is shown that BER is not only dependent on the RMS delay spread, but also on the distribution of temporal and spatial multipath components in local areas and can underestimate the BER by orders of magnitude.
Abstract: An accurate software/hardware bit-by-bit error simulator for mobile radio communications is described. Simulation results in indoor and outdoor channels are compared with theoretical results. Bit error rate (BER) results in simulated frequency-selective fading channels generated by several channel models such as two-ray, constant amplitude, and simulated indoor radio channel impulse models (SIRCIMs) are presented. It is shown that BER is not only dependent on the RMS delay spread, but also on the distribution of temporal and spatial multipath components in local areas. An important result is that a two-ray Rayleigh fading model is a poor fit for indoor wireless channels and, if used, can underestimate the BER by orders of magnitude. A real-time bit error simulation of video transmission using the bit-by-bit error simulator is described. The simulator, called BERSIM, is shown to be a useful tool for evaluating emerging data transmission products for digital mobile communications. >

77 citations

Proceedings ArticleDOI
10 Dec 2002
TL;DR: In this paper, measured data for 2.4 GHz and 60 GHz in-building partition loss are presented. But the authors focus on the 2.5 GHz band and do not consider the 60 GHz band.
Abstract: This paper contains measured data for 2.5 and 60 GHz in-building partition loss. Path loss measurements were recorded using a broadband sliding correlator channel sounder which recorded over 39000 power delay profiles (PDP) in 22 separate locations in a modern office building. Transmitters and receivers were separated by distances ranging from 3.5 to 27.4 meters, and were separated by a variety of obstructions, in order to emulate future single-cell-per-room wireless networks. These measurements may aid in the development of future in-building wireless networks in the unlicensed 2.4 GHz and 60 GHz bands.

77 citations

Proceedings ArticleDOI
10 Jun 2014
TL;DR: The potential of utilizing spatial filtering and beam combining to significantly improve received signal levels and link margins at millimeter-wave frequencies is demonstrated.
Abstract: The performance of multi-beam antenna equal gain combining for improving signal quality in future millimeter-wave cellular systems is evaluated in this article Employing experimental data obtained from 28 GHz and 73 GHz propagation measurements in the dense urban environment of New York City, we present the impact of coherent bi-beam, tri-beam and quad-beam combining on path loss and shadow factors The results reveal that a maximum of 249 dB improvement in path loss at 28 GHz and 348 dB at 73 GHz for 100 m T-R (transmitter-receiver) separation distances can be achieved via combining the strongest four received signals from distinct beams, when compared to the case of signals at the receiver with randomly pointed beams Comparable path loss values are achieved at both 28 and 73 GHz bands This paper demonstrates the potential of utilizing spatial filtering and beam combining to significantly improve received signal levels and link margins at millimeter-wave frequencies

76 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Journal ArticleDOI
TL;DR: The concept of sensor networks which has been made viable by the convergence of micro-electro-mechanical systems technology, wireless communications and digital electronics is described.

17,936 citations

Journal ArticleDOI
TL;DR: Using distributed antennas, this work develops and analyzes low-complexity cooperative diversity protocols that combat fading induced by multipath propagation in wireless networks and develops performance characterizations in terms of outage events and associated outage probabilities, which measure robustness of the transmissions to fading.
Abstract: We develop and analyze low-complexity cooperative diversity protocols that combat fading induced by multipath propagation in wireless networks. The underlying techniques exploit space diversity available through cooperating terminals' relaying signals for one another. We outline several strategies employed by the cooperating radios, including fixed relaying schemes such as amplify-and-forward and decode-and-forward, selection relaying schemes that adapt based upon channel measurements between the cooperating terminals, and incremental relaying schemes that adapt based upon limited feedback from the destination terminal. We develop performance characterizations in terms of outage events and associated outage probabilities, which measure robustness of the transmissions to fading, focusing on the high signal-to-noise ratio (SNR) regime. Except for fixed decode-and-forward, all of our cooperative diversity protocols are efficient in the sense that they achieve full diversity (i.e., second-order diversity in the case of two terminals), and, moreover, are close to optimum (within 1.5 dB) in certain regimes. Thus, using distributed antennas, we can provide the powerful benefits of space diversity without need for physical arrays, though at a loss of spectral efficiency due to half-duplex operation and possibly at the cost of additional receive hardware. Applicable to any wireless setting, including cellular or ad hoc networks-wherever space constraints preclude the use of physical arrays-the performance characterizations reveal that large power or energy savings result from the use of these protocols.

12,761 citations

Journal ArticleDOI
Simon Haykin1
TL;DR: Following the discussion of interference temperature as a new metric for the quantification and management of interference, the paper addresses three fundamental cognitive tasks: radio-scene analysis, channel-state estimation and predictive modeling, and the emergent behavior of cognitive radio.
Abstract: Cognitive radio is viewed as a novel approach for improving the utilization of a precious natural resource: the radio electromagnetic spectrum. The cognitive radio, built on a software-defined radio, is defined as an intelligent wireless communication system that is aware of its environment and uses the methodology of understanding-by-building to learn from the environment and adapt to statistical variations in the input stimuli, with two primary objectives in mind: /spl middot/ highly reliable communication whenever and wherever needed; /spl middot/ efficient utilization of the radio spectrum. Following the discussion of interference temperature as a new metric for the quantification and management of interference, the paper addresses three fundamental cognitive tasks. 1) Radio-scene analysis. 2) Channel-state estimation and predictive modeling. 3) Transmit-power control and dynamic spectrum management. This work also discusses the emergent behavior of cognitive radio.

12,172 citations

Journal ArticleDOI
TL;DR: This work develops and analyzes low-energy adaptive clustering hierarchy (LEACH), a protocol architecture for microsensor networks that combines the ideas of energy-efficient cluster-based routing and media access together with application-specific data aggregation to achieve good performance in terms of system lifetime, latency, and application-perceived quality.
Abstract: Networking together hundreds or thousands of cheap microsensor nodes allows users to accurately monitor a remote environment by intelligently combining the data from the individual nodes. These networks require robust wireless communication protocols that are energy efficient and provide low latency. We develop and analyze low-energy adaptive clustering hierarchy (LEACH), a protocol architecture for microsensor networks that combines the ideas of energy-efficient cluster-based routing and media access together with application-specific data aggregation to achieve good performance in terms of system lifetime, latency, and application-perceived quality. LEACH includes a new, distributed cluster formation technique that enables self-organization of large numbers of nodes, algorithms for adapting clusters and rotating cluster head positions to evenly distribute the energy load among all the nodes, and techniques to enable distributed signal processing to save communication resources. Our results show that LEACH can improve system lifetime by an order of magnitude compared with general-purpose multihop approaches.

10,296 citations