scispace - formally typeset
Search or ask a question
Author

Theodore S. Rappaport

Bio: Theodore S. Rappaport is an academic researcher from New York University. The author has contributed to research in topics: Path loss & Multipath propagation. The author has an hindex of 112, co-authored 490 publications receiving 68853 citations. Previous affiliations of Theodore S. Rappaport include University of Waterloo & University of Texas at Austin.


Papers
More filters
Journal ArticleDOI
TL;DR: Measurement of PWLAN traffic statistics and application-level throughput at four hotspots that provide free Internet access provides insights into the required provisioning for PWLANs and autonomous control approaches for future broadband wireless access and real-time wireless voice/video services.
Abstract: Public wireless local-area networks (PWLANs) based on IEEE 802.11 a/b/g standards are growing rapidly. Thus, it is critical to understand aggregated traffic statistics and network performance at and around PWLAN service areas. This paper presents measured PWLAN traffic statistics and application-level throughput at four hotspots that provide free Internet access. The four hotspots, located in Austin, Texas and owned by Schlotzsky's Inc., a national restaurant chain, used standard IEEE 802.11b equipment. This measurement campaign provided approximately 16 million PWLAN packets and several hundred throughput and SNR measurements. Throughput prediction models are developed based upon the measured data. These analysis results and throughput prediction models may facilitate the design and development of IEEE 802.11 e/n standards and implementations. Moreover, the results provide insights into the required provisioning for PWLANs and autonomous control approaches for future broadband wireless access and real-time wireless voice/video services

76 citations

Proceedings ArticleDOI
24 Apr 1988
TL;DR: Analytical results support the analytical results which indicate excellent positioning accuracy is possible over a large workspace, and that unlike dead reckoning systems, navigation errors are dependent solely upon the vehicle's position in the workspace and not the distance traveled.
Abstract: A beacon method for locating autonomous vehicles in a flexible manufacturing environment is presented, and typical positioning errors of such a method are computed. Data obtained from an experimental beacon navigation system support the analytical results which indicate excellent positioning accuracy is possible over a large workspace, and that unlike dead reckoning systems, navigation errors are dependent solely upon the vehicle's position in the workspace and not the distance traveled. >

74 citations

Journal ArticleDOI
TL;DR: In this paper, a comparison of indoor radio propagation measurements and corresponding channel statistics at 28, 73, and 140 GHz, based on extensive measurements from 2014-2020 in an indoor office environment, is provided.
Abstract: This letter provides a comparison of indoor radio propagation measurements and corresponding channel statistics at 28, 73, and 140 GHz, based on extensive measurements from 2014–2020 in an indoor office environment. Side-by-side comparisons of propagation characteristics (e.g., large-scale path loss and multipath time dispersion) across a wide range of frequencies from the low millimeter wave band of 28 GHz to the sub-THz band of 140 GHz illustrate the key similarities and differences in indoor wireless channels. The measurements and models show remarkably similar path loss exponents over frequencies in both line-of-sight (LOS) and non-LOS (NLOS) scenarios, when using a one meter free space reference distance, while the multipath time dispersion becomes smaller at higher frequencies. The 3GPP indoor channel model overestimates the large-scale path loss and has unrealistic large numbers of clusters and multipath components per cluster compared to the measured channel statistics in this letter.

74 citations

Patent
17 Dec 2001
TL;DR: In this article, a computerized system allows for collecting data for a spatially distributed group of objects or networks by either skilled or unskilled personnel and for analyzing the collected data in an environmental database.
Abstract: A computerized system allows for collecting data for a spatially distributed group of objects or networks by either skilled or unskilled personnel and for analyzing the collected data in an environmental database.

74 citations

Proceedings ArticleDOI
08 Jun 2015
TL;DR: This paper presents directional and omnidirectional RMS delay spread statistics obtained from 28 GHz and 73 GHz ultrawideband propagation measurements carried out in New York City using a 400 Megachips per second broadband sliding correlator channel sounder and highly directional steerable horn antennas.
Abstract: This paper presents directional and omnidirectional RMS delay spread statistics obtained from 28 GHz and 73 GHz ultrawideband propagation measurements carried out in New York City using a 400 Megachips per second broadband sliding correlator channel sounder and highly directional steerable horn antennas. The 28 GHz measurements did not systematically seek the optimum antenna pointing angles and resulted in 33% outage for 39 T-R separation distances within 200 m. The 73 GHz measurements systematically found the best antenna pointing angles and resulted in 14.3% outage for 35 T-R separation distances within 200 m, all for mobile height receivers. Pointing the antennas to yield the strongest received power is shown to significantly reduce RMS delay spreads in line-of-sight (LOS) environments. A new term, distance extension exponent (DEE) is defined, and used to mathematically describe the increase in coverage distance that results by combining beams from angles with the strongest received power at a given location. These results suggest that employing directionality in millimeter-wave communications systems will reduce inter-symbol interference, improve link margin at cell edges, and enhance overall system performance.

73 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Journal ArticleDOI
TL;DR: The concept of sensor networks which has been made viable by the convergence of micro-electro-mechanical systems technology, wireless communications and digital electronics is described.

17,936 citations

Journal ArticleDOI
TL;DR: Using distributed antennas, this work develops and analyzes low-complexity cooperative diversity protocols that combat fading induced by multipath propagation in wireless networks and develops performance characterizations in terms of outage events and associated outage probabilities, which measure robustness of the transmissions to fading.
Abstract: We develop and analyze low-complexity cooperative diversity protocols that combat fading induced by multipath propagation in wireless networks. The underlying techniques exploit space diversity available through cooperating terminals' relaying signals for one another. We outline several strategies employed by the cooperating radios, including fixed relaying schemes such as amplify-and-forward and decode-and-forward, selection relaying schemes that adapt based upon channel measurements between the cooperating terminals, and incremental relaying schemes that adapt based upon limited feedback from the destination terminal. We develop performance characterizations in terms of outage events and associated outage probabilities, which measure robustness of the transmissions to fading, focusing on the high signal-to-noise ratio (SNR) regime. Except for fixed decode-and-forward, all of our cooperative diversity protocols are efficient in the sense that they achieve full diversity (i.e., second-order diversity in the case of two terminals), and, moreover, are close to optimum (within 1.5 dB) in certain regimes. Thus, using distributed antennas, we can provide the powerful benefits of space diversity without need for physical arrays, though at a loss of spectral efficiency due to half-duplex operation and possibly at the cost of additional receive hardware. Applicable to any wireless setting, including cellular or ad hoc networks-wherever space constraints preclude the use of physical arrays-the performance characterizations reveal that large power or energy savings result from the use of these protocols.

12,761 citations

Journal ArticleDOI
Simon Haykin1
TL;DR: Following the discussion of interference temperature as a new metric for the quantification and management of interference, the paper addresses three fundamental cognitive tasks: radio-scene analysis, channel-state estimation and predictive modeling, and the emergent behavior of cognitive radio.
Abstract: Cognitive radio is viewed as a novel approach for improving the utilization of a precious natural resource: the radio electromagnetic spectrum. The cognitive radio, built on a software-defined radio, is defined as an intelligent wireless communication system that is aware of its environment and uses the methodology of understanding-by-building to learn from the environment and adapt to statistical variations in the input stimuli, with two primary objectives in mind: /spl middot/ highly reliable communication whenever and wherever needed; /spl middot/ efficient utilization of the radio spectrum. Following the discussion of interference temperature as a new metric for the quantification and management of interference, the paper addresses three fundamental cognitive tasks. 1) Radio-scene analysis. 2) Channel-state estimation and predictive modeling. 3) Transmit-power control and dynamic spectrum management. This work also discusses the emergent behavior of cognitive radio.

12,172 citations

Journal ArticleDOI
TL;DR: This work develops and analyzes low-energy adaptive clustering hierarchy (LEACH), a protocol architecture for microsensor networks that combines the ideas of energy-efficient cluster-based routing and media access together with application-specific data aggregation to achieve good performance in terms of system lifetime, latency, and application-perceived quality.
Abstract: Networking together hundreds or thousands of cheap microsensor nodes allows users to accurately monitor a remote environment by intelligently combining the data from the individual nodes. These networks require robust wireless communication protocols that are energy efficient and provide low latency. We develop and analyze low-energy adaptive clustering hierarchy (LEACH), a protocol architecture for microsensor networks that combines the ideas of energy-efficient cluster-based routing and media access together with application-specific data aggregation to achieve good performance in terms of system lifetime, latency, and application-perceived quality. LEACH includes a new, distributed cluster formation technique that enables self-organization of large numbers of nodes, algorithms for adapting clusters and rotating cluster head positions to evenly distribute the energy load among all the nodes, and techniques to enable distributed signal processing to save communication resources. Our results show that LEACH can improve system lifetime by an order of magnitude compared with general-purpose multihop approaches.

10,296 citations