scispace - formally typeset
Search or ask a question
Author

Theodore S. Rappaport

Bio: Theodore S. Rappaport is an academic researcher from New York University. The author has contributed to research in topics: Path loss & Multipath propagation. The author has an hindex of 112, co-authored 490 publications receiving 68853 citations. Previous affiliations of Theodore S. Rappaport include University of Waterloo & University of Texas at Austin.


Papers
More filters
Proceedings ArticleDOI
19 May 1991
TL;DR: Preliminary evaluation of techniques to predict signal strength based on site-specific geometry are presented and average floor attenuation factors which describe the additional path loss caused by floors between the transmitter and receiver are found.
Abstract: The effects of walls, floors, and building type on path loss in four different buildings are considered. Using a simple d/sup n/ model, average path loss falls off to the n=3.14 power with a standard deviation of 16.3 dB for the entire data set. However, when the effects of building type and number of floors between the transmitter and receiver are considered, standard deviations are reduced to 5 dB about a mean d/sup n/ power law. Average floor attenuation factors which describe the additional path loss caused by floors between the transmitter and receiver are found for as many as four floors in a typical office building. Preliminary evaluation of techniques to predict signal strength based on site-specific geometry are presented. >

41 citations

Proceedings ArticleDOI
21 May 2017
TL;DR: Measured data reveal that the small-scale spatial fading of the received signal voltage amplitude are generally Ricean-distributed for both omnidirectional and directional RX antenna patterns under both LOS and NLOS conditions in most cases, except for the log-normal distribution for the omniddirectional RX antenna pattern in the NLOS environment.
Abstract: This paper presents outdoor wideband small-scale spatial fading and autocorrelation measurements and results in the 73 GHz millimeter-wave (mmWave) band conducted in downtown Brooklyn, New York. Both directional and omnidirectional receiver (RX) antennas are studied. Two pairs of transmitter (TX) and RX locations were tested with one line-of-sight (LOS) and one non-line-of-sight (NLOS) environment, where a linear track was employed at each RX to move the antenna in half-wavelength increments. Measured data reveal that the small-scale spatial fading of the received signal voltage amplitude are generally Ricean-distributed for both omnidirectional and directional RX antenna patterns under both LOS and NLOS conditions in most cases, except for the log-normal distribution for the omnidirectional RX antenna pattern in the NLOS environment. Sinusoidal exponential and typical exponential functions are found to model small-scale spatial autocorrelation of the received signal voltage amplitude in LOS and NLOS environments in most cases, respectively. Furthermore, different decorrelation distances were observed for different RX track orientations, i.e., for different directions of motion relative to the TX. Results herein are valuable for characterizing small-scale spatial fading and autocorrelation properties in multiple-input multiple-output (MIMO) systems for fifth-generation (5G) mmWave frequencies.

40 citations

Book ChapterDOI
29 Nov 1993
TL;DR: Simulations and analytical results are presented which demonstrate that adaptive antennas at the base station can dramatically improve the reverse channel performance of multi-cell radio systems, and new analytical techniques for characterizing mobile radio systems which employ frequency reuse are described.
Abstract: The authors examine the performance enhancements that can be achieved by employing adaptive antennas in code division multiple access (CDMA) cellular radio systems. The goal is to determine what improvements are possible using narrowbeam antenna techniques, assuming that adaptive algorithms and the associated hardware to implement these systems can be realized. Simulations and analytical results are presented which demonstrate that adaptive antennas at the base station can dramatically improve the reverse channel performance of multi-cell radio systems, and new analytical techniques for characterizing mobile radio systems which employ frequency reuse are described. The authors also discuss the effects of using adaptive antennas at the portable unit. >

40 citations

Proceedings ArticleDOI
16 Dec 2002
TL;DR: This technical overview outlines some key network research issues, and differentiates the features of wireless networks and the services that they will support.
Abstract: This technical overview outlines some key network research issues, and differentiates the features of wireless networks and the services that they will support. As the Internet becomes ubiquitously delivered on mobile platforms, new approaches to wireless networking that build upon the advances of wireline networks and cellular system design will be required.

39 citations

Journal ArticleDOI
TL;DR: Mixed-signal CMOS integrated circuits designs are proposed for the implementation of DVM multibeam algorithms along with low-complexity digital realizations to achieve hybrid beamforming for mmW applications.
Abstract: This paper proposes a low-complexity wideband beamforming subarray for millimeter wave (mmW) 5G wireless communications. The multibeam subarray is based on using a novel delay Vandermonde matrix (DVM) algorithm to efficiently generate analog true-time-delay beams that have no beam squint. A factorization for the DVM leading to low-complexity analog realizations is provided and complexity analysis for real and complex inputs is derived. The DVM is a special case of a Vandermonde matrix but with complex nodes that lack any special properties (unlike the discrete Fourier transform matrix). Error bounds for the DVM are established and then analyzed for numerical stability. Mixed-signal CMOS integrated circuits designs are proposed for the implementation of DVM multibeam algorithms along with low-complexity digital realizations to achieve hybrid beamforming for mmW applications. Analog–digital hybrid mmW multibeam beamforming circuits and systems are designed, for example, with eight beams at 28 GHz and simulated in cadence for functional verification.

39 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Journal ArticleDOI
TL;DR: The concept of sensor networks which has been made viable by the convergence of micro-electro-mechanical systems technology, wireless communications and digital electronics is described.

17,936 citations

Journal ArticleDOI
TL;DR: Using distributed antennas, this work develops and analyzes low-complexity cooperative diversity protocols that combat fading induced by multipath propagation in wireless networks and develops performance characterizations in terms of outage events and associated outage probabilities, which measure robustness of the transmissions to fading.
Abstract: We develop and analyze low-complexity cooperative diversity protocols that combat fading induced by multipath propagation in wireless networks. The underlying techniques exploit space diversity available through cooperating terminals' relaying signals for one another. We outline several strategies employed by the cooperating radios, including fixed relaying schemes such as amplify-and-forward and decode-and-forward, selection relaying schemes that adapt based upon channel measurements between the cooperating terminals, and incremental relaying schemes that adapt based upon limited feedback from the destination terminal. We develop performance characterizations in terms of outage events and associated outage probabilities, which measure robustness of the transmissions to fading, focusing on the high signal-to-noise ratio (SNR) regime. Except for fixed decode-and-forward, all of our cooperative diversity protocols are efficient in the sense that they achieve full diversity (i.e., second-order diversity in the case of two terminals), and, moreover, are close to optimum (within 1.5 dB) in certain regimes. Thus, using distributed antennas, we can provide the powerful benefits of space diversity without need for physical arrays, though at a loss of spectral efficiency due to half-duplex operation and possibly at the cost of additional receive hardware. Applicable to any wireless setting, including cellular or ad hoc networks-wherever space constraints preclude the use of physical arrays-the performance characterizations reveal that large power or energy savings result from the use of these protocols.

12,761 citations

Journal ArticleDOI
Simon Haykin1
TL;DR: Following the discussion of interference temperature as a new metric for the quantification and management of interference, the paper addresses three fundamental cognitive tasks: radio-scene analysis, channel-state estimation and predictive modeling, and the emergent behavior of cognitive radio.
Abstract: Cognitive radio is viewed as a novel approach for improving the utilization of a precious natural resource: the radio electromagnetic spectrum. The cognitive radio, built on a software-defined radio, is defined as an intelligent wireless communication system that is aware of its environment and uses the methodology of understanding-by-building to learn from the environment and adapt to statistical variations in the input stimuli, with two primary objectives in mind: /spl middot/ highly reliable communication whenever and wherever needed; /spl middot/ efficient utilization of the radio spectrum. Following the discussion of interference temperature as a new metric for the quantification and management of interference, the paper addresses three fundamental cognitive tasks. 1) Radio-scene analysis. 2) Channel-state estimation and predictive modeling. 3) Transmit-power control and dynamic spectrum management. This work also discusses the emergent behavior of cognitive radio.

12,172 citations

Journal ArticleDOI
TL;DR: This work develops and analyzes low-energy adaptive clustering hierarchy (LEACH), a protocol architecture for microsensor networks that combines the ideas of energy-efficient cluster-based routing and media access together with application-specific data aggregation to achieve good performance in terms of system lifetime, latency, and application-perceived quality.
Abstract: Networking together hundreds or thousands of cheap microsensor nodes allows users to accurately monitor a remote environment by intelligently combining the data from the individual nodes. These networks require robust wireless communication protocols that are energy efficient and provide low latency. We develop and analyze low-energy adaptive clustering hierarchy (LEACH), a protocol architecture for microsensor networks that combines the ideas of energy-efficient cluster-based routing and media access together with application-specific data aggregation to achieve good performance in terms of system lifetime, latency, and application-perceived quality. LEACH includes a new, distributed cluster formation technique that enables self-organization of large numbers of nodes, algorithms for adapting clusters and rotating cluster head positions to evenly distribute the energy load among all the nodes, and techniques to enable distributed signal processing to save communication resources. Our results show that LEACH can improve system lifetime by an order of magnitude compared with general-purpose multihop approaches.

10,296 citations