scispace - formally typeset
Search or ask a question
Author

Theodore S. Rappaport

Bio: Theodore S. Rappaport is an academic researcher from New York University. The author has contributed to research in topics: Path loss & Multipath propagation. The author has an hindex of 112, co-authored 490 publications receiving 68853 citations. Previous affiliations of Theodore S. Rappaport include University of Waterloo & University of Texas at Austin.


Papers
More filters
Proceedings ArticleDOI
20 Jun 2004
TL;DR: The results show that the proposed MC-MC- CDMA system clearly outperforms both single-code multicarrier CDMA (MC-CDMA) and single-carrier multi-code CDMA in a fixed bandwidth allocation, which indicates that MC- MC-CD MA should be seriously considered for next generation cellular systems.
Abstract: A novel multi-code multicarrier code division multiple access (MC-MC-CDMA) system is proposed and analyzed in a frequency selective fading channel. By allowing each user to transmit multiple orthogonal codes, the proposed MC-MC-CDMA system can support various data rates, as required by next generation standards, and achieve spreading gain in the time domain. Multicarrier CDMA provides robustness to multipath and spreading in the frequency domain. The bit error rate of the system is analytically derived in frequency selective fading, with Gaussian noise and multiple access interference. The results show that the proposed MC-MC-CDMA system clearly outperforms both single-code multicarrier CDMA (MC-CDMA) and single-carrier multi-code CDMA in a fixed bandwidth allocation. This indicates that MC-MC-CDMA should be seriously considered for next generation cellular systems.

29 citations

Posted Content
TL;DR: Results indicate high shadowing attenuation is not just due to the human blocker but also isdue to the static directional nature of the antennas used, leading to the need for phased-array antennas to switch beam directions in the presence of obstructions and blockages at millimeter-waves.
Abstract: This paper presents 73 GHz human blockage measurements for a point-to-point link with a 5 m transmitter-receiver separation distance in an indoor environment, with a human that walked at a speed of approximately 1 m/s at a perpendicular orientation to the line between the transmitter and receiver, at various distances between them. The experiment measures the shadowing effect of a moving human body when using directional antennas at the transmitter and receiver for millimeter-wave radio communications. The measurements were conducted using a 500 Megachips-per-second wideband correlator channel sounder with a 1 GHz first null-to-null RF bandwidth. Results indicate high shadowing attenuation is not just due to the human blocker but also is due to the static directional nature of the antennas used, leading to the need for phased-array antennas to switch beam directions in the presence of obstructions and blockages at millimeter-waves. A simple model for human blockage is provided based on the double knife-edge diffraction (DKED) model where humans are approximated by a rectangular screen with infinite vertical height, similar to the human blockage model given by the METIS project.

28 citations

Posted Content
TL;DR: This paper presents two outdoor wideband measurement campaigns in downtown Brooklyn in the sub-THz band of 140 GHz with TX-RX separation distance up to 117.4 m, and proves the feasibility of using THz frequency bands for outdoor fixed and mobile cellular communications.
Abstract: Terahertz frequency bands will likely be used for the next-generation wireless communication systems to provide data rates of hundreds of Gbps or even Tbps because of the wide swaths of unused and unexplored spectrum. This paper presents two outdoor wideband measurement campaigns in downtown Brooklyn (urban microcell environment) in the sub-THz band of 140 GHz with TX-RX separation distance up to 100 m: i) terrestrial urban microcell measurement campaign, and ii) rooftop surrogate satellite and backhaul measurement campaign. Outdoor omnidirectional and directional path loss models for both line-of-sight and non-line-of-sight scenarios, as well as foliage loss (signal attenuation through foliage), are provided at 140 GHz for urban microcell environments. These measurements and models provide an understanding of both the outdoor terrestrial (e.g., 6G cellular and backhaul) and non-terrestrial (e.g., satellite and unmanned aerial vehicle communications) wireless channels, and prove the feasibility of using THz frequency bands for outdoor fixed and mobile cellular communications. This paper can be used for future outdoor wireless system design at frequencies above 100 GHz.

28 citations

Proceedings ArticleDOI
05 Jun 2011
TL;DR: In this paper, the authors used superposition and S-parameter techniques to de-embed the effects of probe tip radiation from measured on-chip antenna patterns performed in a probe station environment.
Abstract: We present two methods to remove wafer probe interference radiation from measured on-chip antenna patterns performed in a probe station environment. On-chip antenna pattern and gain measurements are affected by parasitic probe tip radiation as well as scattered energy from the metal probe station environment. In this work, we use superposition and S-parameter techniques to de-embed the effects of probe tip radiation. On-chip Dipole, Yagi, and Rhombic antennas were fabricated using standard 180nm CMOS, and radiation patterns were measured at 60 GHz. This work shows methods that improve the ability to reliably design, predict, and measure on-chip antenna patterns.

28 citations

Proceedings ArticleDOI
TL;DR: In this paper, the authors present a preliminary overview of the 5G channel models for bands up to 100 GHz in indoor offices and shopping malls, derived from extensive measurements across a multitude of bands.
Abstract: Future mobile communications systems are likely to be very different to those of today with new service innovations driven by increasing data traffic demand, increasing processing power of smart devices and new innovative applications. To meet these service demands the telecommunications industry is converging on a common set of 5G requirements which includes network speeds as high as 10 Gbps, cell edge rate greater than 100 Mbps, and latency of less than 1 msec. To reach these 5G requirements the industry is looking at new spectrum bands in the range up to 100 GHz where there is spectrum availability for wide bandwidth channels. For the development of new 5G systems to operate in bands up to 100 GHz there is a need for accurate radio propagation models which are not addressed by existing channel models developed for bands below 6 GHz. This paper presents a preliminary overview of the 5G channel models for bands up to 100 GHz in indoor offices and shopping malls, derived from extensive measurements across a multitude of bands. These studies have found some extensibility of the existing 3GPP models to the higher frequency bands up to 100 GHz. The measurements indicate that the smaller wavelengths introduce an increased sensitivity of the propagation models to the scale of the environment and show some frequency dependence of the path loss as well as increased occurrence of blockage. Further, the penetration loss is highly dependent on the material and tends to increase with frequency. The small-scale characteristics of the channel such as delay spread and angular spread and the multipath richness is somewhat similar over the frequency range, which is encouraging for extending the existing 3GPP models to the wider frequency range. Further work will be carried out to complete these models, but this paper presents the first steps for an initial basis for the model development.

28 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Journal ArticleDOI
TL;DR: The concept of sensor networks which has been made viable by the convergence of micro-electro-mechanical systems technology, wireless communications and digital electronics is described.

17,936 citations

Journal ArticleDOI
TL;DR: Using distributed antennas, this work develops and analyzes low-complexity cooperative diversity protocols that combat fading induced by multipath propagation in wireless networks and develops performance characterizations in terms of outage events and associated outage probabilities, which measure robustness of the transmissions to fading.
Abstract: We develop and analyze low-complexity cooperative diversity protocols that combat fading induced by multipath propagation in wireless networks. The underlying techniques exploit space diversity available through cooperating terminals' relaying signals for one another. We outline several strategies employed by the cooperating radios, including fixed relaying schemes such as amplify-and-forward and decode-and-forward, selection relaying schemes that adapt based upon channel measurements between the cooperating terminals, and incremental relaying schemes that adapt based upon limited feedback from the destination terminal. We develop performance characterizations in terms of outage events and associated outage probabilities, which measure robustness of the transmissions to fading, focusing on the high signal-to-noise ratio (SNR) regime. Except for fixed decode-and-forward, all of our cooperative diversity protocols are efficient in the sense that they achieve full diversity (i.e., second-order diversity in the case of two terminals), and, moreover, are close to optimum (within 1.5 dB) in certain regimes. Thus, using distributed antennas, we can provide the powerful benefits of space diversity without need for physical arrays, though at a loss of spectral efficiency due to half-duplex operation and possibly at the cost of additional receive hardware. Applicable to any wireless setting, including cellular or ad hoc networks-wherever space constraints preclude the use of physical arrays-the performance characterizations reveal that large power or energy savings result from the use of these protocols.

12,761 citations

Journal ArticleDOI
Simon Haykin1
TL;DR: Following the discussion of interference temperature as a new metric for the quantification and management of interference, the paper addresses three fundamental cognitive tasks: radio-scene analysis, channel-state estimation and predictive modeling, and the emergent behavior of cognitive radio.
Abstract: Cognitive radio is viewed as a novel approach for improving the utilization of a precious natural resource: the radio electromagnetic spectrum. The cognitive radio, built on a software-defined radio, is defined as an intelligent wireless communication system that is aware of its environment and uses the methodology of understanding-by-building to learn from the environment and adapt to statistical variations in the input stimuli, with two primary objectives in mind: /spl middot/ highly reliable communication whenever and wherever needed; /spl middot/ efficient utilization of the radio spectrum. Following the discussion of interference temperature as a new metric for the quantification and management of interference, the paper addresses three fundamental cognitive tasks. 1) Radio-scene analysis. 2) Channel-state estimation and predictive modeling. 3) Transmit-power control and dynamic spectrum management. This work also discusses the emergent behavior of cognitive radio.

12,172 citations

Journal ArticleDOI
TL;DR: This work develops and analyzes low-energy adaptive clustering hierarchy (LEACH), a protocol architecture for microsensor networks that combines the ideas of energy-efficient cluster-based routing and media access together with application-specific data aggregation to achieve good performance in terms of system lifetime, latency, and application-perceived quality.
Abstract: Networking together hundreds or thousands of cheap microsensor nodes allows users to accurately monitor a remote environment by intelligently combining the data from the individual nodes. These networks require robust wireless communication protocols that are energy efficient and provide low latency. We develop and analyze low-energy adaptive clustering hierarchy (LEACH), a protocol architecture for microsensor networks that combines the ideas of energy-efficient cluster-based routing and media access together with application-specific data aggregation to achieve good performance in terms of system lifetime, latency, and application-perceived quality. LEACH includes a new, distributed cluster formation technique that enables self-organization of large numbers of nodes, algorithms for adapting clusters and rotating cluster head positions to evenly distribute the energy load among all the nodes, and techniques to enable distributed signal processing to save communication resources. Our results show that LEACH can improve system lifetime by an order of magnitude compared with general-purpose multihop approaches.

10,296 citations